The discrete modified Korteweg-de Vries equation with non-vanishing boundary conditions: Interactions of solitons

被引:11
|
作者
Shek, E. C. M. [1 ]
Chow, K. W. [1 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1016/j.chaos.2006.06.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The discrete modified Korteweg-de Vries equation with negative cubic nonlinearity is considered for non-vanishing boundary condition in the far field. A Hirota bilinear form is established and expressions for 1- and 2-soliton are calculated. The amplitude of the soliton cannot exceed a maximum, and further increasing the wave number will just result in a solitary wave of larger width. This special class of solitary waves is termed 'plateau' solitons here. The interaction of a soliton of less than the maximum amplitude with such a 'plateau' soliton will result in a reversal of polarity of the smaller soliton during the interaction process. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:296 / 302
页数:7
相关论文
共 50 条
  • [1] The discrete modified Korteweg-de Vries equation under nonzero boundary conditions
    Wang, Guixian
    Han, Bo
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 140
  • [3] Discrete artificial boundary conditions for the linearized Korteweg-de Vries equation
    Besse, C.
    Ehrhardt, M.
    Lacroix-Violet, I.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (05) : 1455 - 1484
  • [4] On the generation of solitons and breathers in the modified Korteweg-de Vries equation
    Clarke, S
    Grimshaw, R
    Miller, P
    Pelinovsky, E
    Talipova, T
    [J]. CHAOS, 2000, 10 (02) : 383 - 392
  • [5] Interactions of breathers and solitons in the extended Korteweg-de Vries equation
    Chow, KW
    Grimshaw, RHJ
    Ding, E
    [J]. WAVE MOTION, 2005, 43 (02) : 158 - 166
  • [6] The superposition of algebraic solitons for the modified Korteweg-de Vries equation
    Chow, K. W.
    Wu, C. F.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (01) : 49 - 52
  • [7] THE DISCRETE KORTEWEG-DE VRIES EQUATION
    NIJHOFF, F
    CAPEL, H
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 133 - 158
  • [8] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    [J]. Acta Applicandae Mathematicae, 2012, 118 : 25 - 47
  • [9] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Wang, Pan
    Tian, Bo
    Liu, Wen-Jun
    Jiang, Yan
    Xue, Yue-Shan
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (09):
  • [10] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Pan Wang
    Bo Tian
    Wen-Jun Liu
    Yan Jiang
    Yue-Shan Xue
    [J]. The European Physical Journal D, 2012, 66