The discrete modified Korteweg-de Vries equation with non-vanishing boundary conditions: Interactions of solitons

被引:11
|
作者
Shek, E. C. M. [1 ]
Chow, K. W. [1 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1016/j.chaos.2006.06.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The discrete modified Korteweg-de Vries equation with negative cubic nonlinearity is considered for non-vanishing boundary condition in the far field. A Hirota bilinear form is established and expressions for 1- and 2-soliton are calculated. The amplitude of the soliton cannot exceed a maximum, and further increasing the wave number will just result in a solitary wave of larger width. This special class of solitary waves is termed 'plateau' solitons here. The interaction of a soliton of less than the maximum amplitude with such a 'plateau' soliton will result in a reversal of polarity of the smaller soliton during the interaction process. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:296 / 302
页数:7
相关论文
共 50 条
  • [21] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515
  • [22] ANALYSIS OF A MODIFIED KORTEWEG-DE VRIES EQUATION
    LEO, M
    LEO, RA
    SOLIANI, G
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1475 - 1466
  • [23] MODIFIED KORTEWEG-DE VRIES EQUATION IN ELECTROHYDRODYNAMICS
    PERELMAN, TL
    FRIDMAN, AK
    ELYASHEV.MM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 66 (04): : 1316 - 1323
  • [24] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [25] Orbital stability of a sum of solitons and breathers of the modified Korteweg-de Vries equation
    Semenov, Alexander
    NONLINEARITY, 2022, 35 (08) : 4211 - 4249
  • [26] Asymptotic solitons for a higher-order modified Korteweg-de Vries equation
    Marchant, TR
    PHYSICAL REVIEW E, 2002, 66 (04): : 8 - 046623
  • [27] Interacting Solitons, Periodic Waves and Breather for Modified Korteweg-de Vries Equation
    Kruglov, Vladimir I.
    Triki, Houria
    CHINESE PHYSICS LETTERS, 2023, 40 (09)
  • [28] EXACT SOLUTION OF MODIFIED KORTEWEG-DE VRIES EQUATION FOR MULTIPLE COLLISIONS OF SOLITONS
    HIROTA, R
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 33 (05) : 1456 - 1458
  • [29] Local absorbing boundary conditions for a linearized Korteweg-de Vries equation
    Zhang, Wei
    Li, Hongwei
    Wu, Xiaonan
    PHYSICAL REVIEW E, 2014, 89 (05):
  • [30] Inverse scattering transform for the coupled modified Korteweg-de Vries equation with nonzero boundary conditions
    Xiao, Yu
    Fan, Engui
    Liu, Pan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (02)