Deformable Surface Registration with Extreme Learning Machines

被引:0
|
作者
Gritsenko, Andrey [1 ,2 ]
Sun, Zhiyu [1 ,3 ]
Baek, Stephen [1 ,3 ]
Miche, Yoan [4 ]
Hu, Renjie [1 ,2 ]
Lendasse, Amaury [1 ,2 ,5 ]
机构
[1] Univ Iowa, Dept Mech & Ind Engn, Iowa City, IA 52242 USA
[2] Univ Iowa, Iowa Informat Initiat, Iowa City, IA 52242 USA
[3] Univ Iowa, Ctr Comp Aided Design, Iowa City, IA USA
[4] Nokia, Bell Labs, Espoo, Finland
[5] Arcada Univ Appl Sci, Helsinki, Finland
来源
PROCEEDINGS OF ELM-2017 | 2019年 / 10卷
关键词
Surface registration; Deformable registration; Non-isometric distortion; Spectral descriptors; Non-strict classification; Similarity measure; Distance metric; 3D mesh; Extreme learning machines; Computer graphics; SPECTRAL DESCRIPTORS; RECOGNITION;
D O I
10.1007/978-3-030-01520-6_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the most important open problems in the field of computer-aided design and computer graphics is the task of surface registration for non-isometric cases. One of the approaches of addressing surface registration problem is to find the point-wise correspondence between surfaces using state-of-the-art shape descriptors. This paper introduces an improvement to this approach by means of Extreme Learning Machines. The ELM model is trained to distinguish pairs of corresponding points from non-corresponding ones on the dataset with highly non-isometric distortions between models. The proposed method is compared with original shape descriptors. The results show the increase of accuracy in surface registration task, and also reveal the bottleneck of the state-of-the-art shape descriptors.
引用
收藏
页码:304 / 316
页数:13
相关论文
共 50 条
  • [31] Learning best features for deformable registration of MR brains
    Wu, GR
    Qi, FH
    Shen, DG
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 2, 2005, 3750 : 179 - 187
  • [32] Deformable structure registration of bladder through surface mapping
    Xiong, Li
    Viswanathan, Akila
    Stewart, Alexandra J.
    Haker, Steven
    Tempany, Clare M.
    Chin, Lee M.
    Cormack, Robert A.
    MEDICAL PHYSICS, 2006, 33 (06) : 1848 - 1856
  • [33] Contour/surface registration using a physically deformable model
    Qian, J
    Mitsa, T
    Hoffman, EA
    PROCEEDINGS OF THE IEEE WORKSHOP ON MATHEMATICAL METHODS IN BIOMEDICAL IMAGE ANALYSIS, 1996, : 114 - 122
  • [34] RSegNet: A Joint Learning Framework for Deformable Registration and Segmentation
    Qiu, Liang
    Ren, Hongliang
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 2499 - 2513
  • [35] Bayesian Deep Learning for Deformable Medical Image Registration
    Deshpande, Vijay S.
    Bhatt, Jignesh S.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT II, 2019, 11942 : 41 - 49
  • [36] Generalized surface flows for deformable registration and cortical matching
    Eckstein, I.
    Joshi, A. A.
    Kuo, C. -C. J.
    Leahy, R.
    Desbrun, M.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2007, PT 1, PROCEEDINGS, 2007, 4791 : 692 - +
  • [37] An Unsupervised Learning Model for Deformable Medical Image Registration
    Balakrishnan, Guha
    Zhao, Amy
    Sabuncu, Mert R.
    Guttag, John
    Dalca, Adrian V.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 9252 - 9260
  • [38] Learning deep representations via extreme learning machines
    Yu, Wenchao
    Zhuang, Fuzhen
    He, Qing
    Shi, Zhongzhi
    NEUROCOMPUTING, 2015, 149 : 308 - 315
  • [39] ELMNET: FEATURE LEARNING USING EXTREME LEARNING MACHINES
    Cui, Dongshun
    Huang, Guang-Bin
    Kasun, L. L. Chamara
    Zhang, Guanghao
    Han, Wei
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1857 - 1861
  • [40] A comparative analysis of support vector machines and extreme learning machines
    Liu, Xueyi
    Gao, Chuanhou
    Li, Ping
    NEURAL NETWORKS, 2012, 33 : 58 - 66