Deformable Surface Registration with Extreme Learning Machines

被引:0
|
作者
Gritsenko, Andrey [1 ,2 ]
Sun, Zhiyu [1 ,3 ]
Baek, Stephen [1 ,3 ]
Miche, Yoan [4 ]
Hu, Renjie [1 ,2 ]
Lendasse, Amaury [1 ,2 ,5 ]
机构
[1] Univ Iowa, Dept Mech & Ind Engn, Iowa City, IA 52242 USA
[2] Univ Iowa, Iowa Informat Initiat, Iowa City, IA 52242 USA
[3] Univ Iowa, Ctr Comp Aided Design, Iowa City, IA USA
[4] Nokia, Bell Labs, Espoo, Finland
[5] Arcada Univ Appl Sci, Helsinki, Finland
来源
PROCEEDINGS OF ELM-2017 | 2019年 / 10卷
关键词
Surface registration; Deformable registration; Non-isometric distortion; Spectral descriptors; Non-strict classification; Similarity measure; Distance metric; 3D mesh; Extreme learning machines; Computer graphics; SPECTRAL DESCRIPTORS; RECOGNITION;
D O I
10.1007/978-3-030-01520-6_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the most important open problems in the field of computer-aided design and computer graphics is the task of surface registration for non-isometric cases. One of the approaches of addressing surface registration problem is to find the point-wise correspondence between surfaces using state-of-the-art shape descriptors. This paper introduces an improvement to this approach by means of Extreme Learning Machines. The ELM model is trained to distinguish pairs of corresponding points from non-corresponding ones on the dataset with highly non-isometric distortions between models. The proposed method is compared with original shape descriptors. The results show the increase of accuracy in surface registration task, and also reveal the bottleneck of the state-of-the-art shape descriptors.
引用
收藏
页码:304 / 316
页数:13
相关论文
共 50 条
  • [21] Extreme learning machines with expectation kernels
    Zhang, Wenyu
    Zhang, Zhenjiang
    Wang, Lifu
    Chao, Han-Chieh
    Zhou, Zhangbing
    PATTERN RECOGNITION, 2019, 96
  • [22] Extreme Learning Machines for Intrusion Detection
    Cheng, Chi
    Tay, Wee Peng
    Huang, Guang-Bin
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [23] Binary/ternary extreme learning machines
    van Heeswijk, Mark
    Miche, Yoan
    NEUROCOMPUTING, 2015, 149 : 187 - 197
  • [24] Online Extreme Evolutionary Learning Machines
    Auerbach, Joshua E.
    Fernando, Chrisantha
    Floreano, Dario
    ALIFE 2014: THE FOURTEENTH INTERNATIONAL CONFERENCE ON THE SYNTHESIS AND SIMULATION OF LIVING SYSTEMS, 2014, : 465 - 472
  • [25] Learning deformable registration of medical images with anatomical constraints
    Mansilla, Lucas
    Milone, Diego H.
    Ferrante, Enzo
    NEURAL NETWORKS, 2020, 124 : 269 - 279
  • [26] Coordinate Translator for Learning Deformable Medical Image Registration
    Liu, Yihao
    Zuo, Lianrui
    Han, Shuo
    Xue, Yuan
    Prince, Jerry L.
    Carass, Aaron
    MULTISCALE MULTIMODAL MEDICAL IMAGING, MMMI 2022, 2022, 13594 : 98 - 109
  • [27] Gauss–Seidel Extreme Learning Machines
    de Freitas R.C.
    Ferreira J.
    de Lima S.M.L.
    Fernandes B.J.T.
    Bezerra B.L.D.
    dos Santos W.P.
    SN Computer Science, 2020, 1 (4)
  • [28] In-Materio Extreme Learning Machines
    Jones, Benedict A. H.
    Al Moubayed, Noura
    Zeze, Dagou A.
    Groves, Chris
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 505 - 519
  • [29] Trends in extreme learning machines: A review
    Huang, Gao
    Huang, Guang-Bin
    Song, Shiji
    You, Keyou
    NEURAL NETWORKS, 2015, 61 : 32 - 48
  • [30] Adaptive multilayer extreme learning machines
    Filelis-Papadopoulos, Christos K.
    Morrison, John P.
    O'Reilly, Philip
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 231 : 71 - 98