Deformable Surface Registration with Extreme Learning Machines

被引:0
|
作者
Gritsenko, Andrey [1 ,2 ]
Sun, Zhiyu [1 ,3 ]
Baek, Stephen [1 ,3 ]
Miche, Yoan [4 ]
Hu, Renjie [1 ,2 ]
Lendasse, Amaury [1 ,2 ,5 ]
机构
[1] Univ Iowa, Dept Mech & Ind Engn, Iowa City, IA 52242 USA
[2] Univ Iowa, Iowa Informat Initiat, Iowa City, IA 52242 USA
[3] Univ Iowa, Ctr Comp Aided Design, Iowa City, IA USA
[4] Nokia, Bell Labs, Espoo, Finland
[5] Arcada Univ Appl Sci, Helsinki, Finland
来源
PROCEEDINGS OF ELM-2017 | 2019年 / 10卷
关键词
Surface registration; Deformable registration; Non-isometric distortion; Spectral descriptors; Non-strict classification; Similarity measure; Distance metric; 3D mesh; Extreme learning machines; Computer graphics; SPECTRAL DESCRIPTORS; RECOGNITION;
D O I
10.1007/978-3-030-01520-6_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the most important open problems in the field of computer-aided design and computer graphics is the task of surface registration for non-isometric cases. One of the approaches of addressing surface registration problem is to find the point-wise correspondence between surfaces using state-of-the-art shape descriptors. This paper introduces an improvement to this approach by means of Extreme Learning Machines. The ELM model is trained to distinguish pairs of corresponding points from non-corresponding ones on the dataset with highly non-isometric distortions between models. The proposed method is compared with original shape descriptors. The results show the increase of accuracy in surface registration task, and also reveal the bottleneck of the state-of-the-art shape descriptors.
引用
收藏
页码:304 / 316
页数:13
相关论文
共 50 条
  • [1] Extreme Learning Machines
    Cambria, Erik
    Huang, Guang-Bin
    IEEE INTELLIGENT SYSTEMS, 2013, 28 (06) : 30 - 31
  • [2] Data Driven Deformable Image Registration for Extreme Deformations
    Castillo, E.
    Fuentes, D.
    MEDICAL PHYSICS, 2019, 46 (06) : E572 - E572
  • [3] Extreme learning machines
    MIT Media Laboratory, Singapore
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    IEEE Intell. Syst., 2013, 6 (30-59):
  • [4] Extreme ensemble of extreme learning machines
    Mansoori, Eghbal G.
    Sara, Massar
    STATISTICAL ANALYSIS AND DATA MINING, 2021, 14 (02) : 116 - 128
  • [5] Fusion of extreme learning machines
    Zhang, Wen-Bo
    Ji, Hong-Bing
    Zhang, W.-B. (zwbsoul@163.com), 1600, Science Press (35): : 2728 - 2732
  • [6] Applications of Extreme Learning Machines
    Chen, Jim X.
    COMPUTING IN SCIENCE & ENGINEERING, 2019, 21 (05) : 4 - 5
  • [7] Heterogeneous Extreme Learning Machines
    Valdes, Julio J.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1678 - 1685
  • [8] Stacked Extreme Learning Machines
    Zhou, Hongming
    Huang, Guang-Bin
    Lin, Zhiping
    Wang, Han
    Soh, Yeng Chai
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (09) : 2013 - 2025
  • [9] Extreme learning machines: a survey
    Huang, Guang-Bin
    Wang, Dian Hui
    Lan, Yuan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2011, 2 (02) : 107 - 122
  • [10] Ensembling extreme learning machines
    Chen, Huawei
    Chen, Huahong
    Nian, Xiaoling
    Liu, Peipei
    ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 1, PROCEEDINGS, 2007, 4491 : 1069 - +