A Kolmogorov-type test for monotonicity of regression

被引:25
|
作者
Durot, C [1 ]
机构
[1] Univ Paris 11, Lab Probabilites Stat & Modelisat, F-91405 Orsay, France
关键词
test for monotonicity; least concave majorant; local alternative; power; nonparametric test;
D O I
10.1016/S0167-7152(03)00122-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new nonparametric procedure for testing monotonicity of a regression mean is proposed. The test is shown to have prescribed asymptotic level and good asymptotic power. It is based on the supremum distance from an empirical process to its least concave majorant and is very easily implementable. A simulation study is reported to demonstrate finite sample behavior of the procedure. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:425 / 433
页数:9
相关论文
共 50 条
  • [41] Stochastic Kolmogorov-Type Population Dynamics with Infinite Distributed Delays
    Hu, Yangzi
    Wu, Fuke
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1407 - 1428
  • [42] Kolmogorov-type inequalities for mixed derivatives of functions of many variables
    Babenko V.F.
    Korneichuk N.P.
    Pichugov S.A.
    Ukrainian Mathematical Journal, 2004, 56 (5) : 699 - 717
  • [43] Periodic Solutions in Kolmogorov-Type Predator-Prey Systems
    Feckan, Michal
    Pacuta, Julius
    Susanto, Hadi
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024,
  • [44] Permanence in Kolmogorov-type systems of nonautonomous functional differential equations
    Tang, BR
    Kuang, Y
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 197 (02) : 427 - 447
  • [45] On Kolmogorov-type inequalities for fractional derivatives of functions of two variables
    V. F. Babenko
    S. A. Pichugov
    Ukrainian Mathematical Journal, 2008, 60 : 977 - 984
  • [46] DEGENERATE PARABOLIC SYSTEMS OF VECTOR ORDER KOLMOGOROV-TYPE EQUATIONS
    Litovchenko, V. A.
    Nastasii, E. B.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (01) : 119 - 133
  • [47] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
    Jiao, Xiaodong
    Yuan, Mingfeng
    Tao, Jin
    Sun, Hao
    Sun, Qinglin
    Chen, Zengqiang
    CHINESE PHYSICS B, 2023, 32 (01)
  • [48] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
    焦晓东
    袁明峰
    陶金
    孙昊
    孙青林
    陈增强
    Chinese Physics B, 2023, (01) : 305 - 312
  • [50] Degenerate parabolic systems of vector order Kolmogorov-type equations
    V. A. Litovchenko
    E. B. Nastasiĭ
    Siberian Mathematical Journal, 2012, 53 : 119 - 133