Kolmogorov-type inequalities for mixed derivatives of functions of many variables

被引:0
|
作者
Babenko V.F. [1 ,2 ]
Korneichuk N.P.
Pichugov S.A. [1 ,3 ]
机构
[1] Dnepropetrovsk University, Dnepropetrovsk
[2] Institute for Applied Mathematics and Mechanics, Ukrainian National Academy of Sciences, Donetsk
[3] Dnepropetrovsk Agricultural University, Dnepropetrovsk
关键词
Positive Component; Mixed Derivative;
D O I
10.1007/s11253-005-0066-1
中图分类号
学科分类号
摘要
Let γ = (γ1,...,γd) be a vector with positive components and let D γ be the corresponding mixed derivative (of order γ j with respect to the j th variable). In the case where d > 1 and 0 < k < r are arbitrary, we prove that sup equation presented at =∞ and equation presented at for all x ∈ L ∞rγ (T d). Moreover, if β̄ is the least possible value of the exponent β in this inequality, then (d-1)(1-k/r)≤ β̄(d, γ,k,r) ≤ d - 1. © 2004 Springer Science+Business Media, Inc.
引用
收藏
页码:699 / 717
页数:18
相关论文
共 50 条