A TRUDINGER-MOSER TYPE INEQUALITY AND ITS EXTREMAL FUNCTIONS IN DIMENSION TWO

被引:3
|
作者
Su, Xianfeng [1 ]
机构
[1] Huaibei Normal Univ, Sch Informat, Huaibei 235000, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2020年 / 14卷 / 02期
关键词
Trudinger-Moser inequality; extremal function; blow-up analysis; L-P NORM; SHARP FORM; EXISTENCE;
D O I
10.7153/jmi-2020-14-37
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a smooth bounded domain in R-2, W-0(1,2) (Omega) be the usual Sobolev space and. (Omega) be the first eigenvalue of the Laplace-Beltrami operator, say lambda(Omega) = inf u epsilon W-0(1,2)(Omega),integral(u2)(Omega)dx=1 integral(Omega)vertical bar del u vertical bar(2)dx. Using blow-up analysis, we prove that for real numbers alpha < lambda (Omega) and beta < 4 pi, the supremum sup (u epsilon W01,2 (Omega), integral Omega vertical bar del u vertical bar 2dx-alpha alpha integral Omega u2dx <= 1) integral(Omega)(e(4 pi u2) - beta u(2)) dx can be attained by some function u epsilon W-0(1,2) (Omega) with integral(Omega) vertical bar del u vertical bar(2)dx-alpha alpha integral(Omega) u(2)dx = 1. In the case beta = 0, this is reduced to a result of Yang [24].
引用
收藏
页码:585 / 599
页数:15
相关论文
共 50 条
  • [41] A SHARP TRUDINGER-MOSER TYPE INEQUALITY IN R2
    de Souza, Manasses
    do O, Joao Marcos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (09) : 4513 - 4549
  • [42] Supercritical Trudinger-Moser inequalities with logarithmic weights in dimension two
    Leuyacc, Yony Raul Santaria
    AIMS MATHEMATICS, 2023, 8 (08): : 18354 - 18372
  • [43] Extremal functions for a singular Hardy-Moser-Trudinger inequality
    Songbo Hou
    Science China(Mathematics), 2019, 62 (12) : 2557 - 2570
  • [44] Extremal functions for a singular Hardy-Moser-Trudinger inequality
    Songbo Hou
    Science China Mathematics, 2019, 62 : 2557 - 2570
  • [45] A sharp Trudinger-Moser type inequality for unbounded domains in Rn
    Li, Yuxiang
    Ruf, Bernhard
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (01) : 451 - 480
  • [46] Extremal functions for a singular Hardy-Moser-Trudinger inequality
    Hou, Songbo
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (12) : 2557 - 2570
  • [47] A Singular Trudinger-Moser Inequality in Hyperbolic Space
    Zhu Xiaobao
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2015, 28 (01): : 39 - 46
  • [48] GLOBAL TRUDINGER-MOSER INEQUALITY ON METRIC SPACES
    Adimurthi
    Gorka, Przemyslaw
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03): : 1131 - 1139
  • [49] Trudinger-Moser inequality in the hyperbolic space HN
    Mancini, Gianni
    Sandeep, Kunnath
    Tintarev, Cyril
    ADVANCES IN NONLINEAR ANALYSIS, 2013, 2 (03) : 309 - 324
  • [50] Extremal for a k-Hessian inequality of Trudinger–Moser type
    J. F. de Oliveira
    J. M. do Ó
    B. Ruf
    Mathematische Zeitschrift, 2020, 295 : 1683 - 1706