A TRUDINGER-MOSER TYPE INEQUALITY AND ITS EXTREMAL FUNCTIONS IN DIMENSION TWO

被引:3
|
作者
Su, Xianfeng [1 ]
机构
[1] Huaibei Normal Univ, Sch Informat, Huaibei 235000, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2020年 / 14卷 / 02期
关键词
Trudinger-Moser inequality; extremal function; blow-up analysis; L-P NORM; SHARP FORM; EXISTENCE;
D O I
10.7153/jmi-2020-14-37
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a smooth bounded domain in R-2, W-0(1,2) (Omega) be the usual Sobolev space and. (Omega) be the first eigenvalue of the Laplace-Beltrami operator, say lambda(Omega) = inf u epsilon W-0(1,2)(Omega),integral(u2)(Omega)dx=1 integral(Omega)vertical bar del u vertical bar(2)dx. Using blow-up analysis, we prove that for real numbers alpha < lambda (Omega) and beta < 4 pi, the supremum sup (u epsilon W01,2 (Omega), integral Omega vertical bar del u vertical bar 2dx-alpha alpha integral Omega u2dx <= 1) integral(Omega)(e(4 pi u2) - beta u(2)) dx can be attained by some function u epsilon W-0(1,2) (Omega) with integral(Omega) vertical bar del u vertical bar(2)dx-alpha alpha integral(Omega) u(2)dx = 1. In the case beta = 0, this is reduced to a result of Yang [24].
引用
收藏
页码:585 / 599
页数:15
相关论文
共 50 条