Pullback attractors for the non-autonomous complex Ginzburg-Landau type equation with p-Laplacian

被引:0
|
作者
Li, Fang [1 ]
You, Bo [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
来源
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
pullback attractor; non-autonomous; p-laplacian; complex Ginzburg-Landau type equations; Sobolev compactness embedding theorem; asymptotic a priori estimates; REACTION-DIFFUSION EQUATIONS; MONOTONICITY METHOD; GLOBAL ATTRACTORS; COCYCLE ATTRACTORS; CAUCHY-PROBLEM; LOCAL SPACES; WEAK; DIMENSION;
D O I
10.15388/NA.2015.2.6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the long-time behavior of the non-autonomous complex Ginzburg-Landau type equation with p-Laplacian. We first prove the existence of pullback absorbing sets in L-2 (Omega) boolean AND W-0(1,p) (Omega) boolean AND L-q (Omega) for the process {U (t, tau)}(t >=tau) corresponding to the non-autonomous complex Ginzburg-Landau type equation with p-Laplacian. Next, the existence of a pullback attractor in L-2 (Omega) is established by the Sobolev compactness embedding theorem. Finally, we prove the existence of a pullback attractor in W-0(1,p) (Omega) for the process {U (t, tau)}(t >=tau) by asymptotic a priori estimates.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 50 条
  • [11] Random attractors for stochastic discrete complex non-autonomous Ginzburg-Landau equations with multiplicative noise
    Peng Wang
    Yumei Huang
    Xiaohu Wang
    [J]. Advances in Difference Equations, 2015
  • [12] ON UNIFORM ATTRACTORS FOR NON-AUTONOMOUS p-LAPLACIAN EQUATION WITH A DYNAMIC BOUNDARY CONDITION
    Yang, Lu
    Yang, Meihua
    Wu, Jie
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 42 (01) : 169 - 180
  • [13] Pullback attractors of nonautonomous discrete p-Laplacian complex Ginzburg–Landau equations with fast-varying delays
    Xiaoqin Pu
    Xuemin Wang
    Dingshi Li
    [J]. Advances in Difference Equations, 2020
  • [14] Random attractors for stochastic discrete complex non-autonomous Ginzburg-Landau equations with multiplicative noise
    Wang, Peng
    Huang, Yumei
    Wang, Xiaohu
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [15] THE REGULARITY OF PULLBACK ATTRACTOR FOR A NON-AUTONOMOUS p-LAPLACIAN EQUATION WITH DYNAMICAL BOUNDARY CONDITION
    Tan, Wen
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (02): : 529 - 546
  • [16] Global attractors for the complex Ginzburg-Landau equation
    Li, Fang
    You, Bo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) : 14 - 24
  • [17] Bi-spatial Pullback Attractors of Non-autonomous p-Laplacian Equations on Unbounded Thin Domains
    Fuzhi Li
    Mirelson M. Freitas
    Jiali Yu
    [J]. Applied Mathematics & Optimization, 2023, 88
  • [18] Bi-spatial Pullback Attractors of Non-autonomous p-Laplacian Equations on Unbounded Thin Domains
    Li, Fuzhi
    Freitas, Mirelson M. M.
    Yu, Jiali
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (01):
  • [19] RANDOM ATTRACTORS FOR NON-AUTONOMOUS FRACTIONAL STOCHASTIC GINZBURG-LANDAU EQUATIONS ON UNBOUNDED DOMAINS
    Shu, Ji
    Zhang, Jian
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (06): : 2592 - 2618
  • [20] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg-Landau Equations
    Guo, Chun Xiao
    Shu, Ji
    Wang, Xiao Hu
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (03) : 318 - 336