Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg-Landau Equations

被引:8
|
作者
Guo, Chun Xiao [1 ]
Shu, Ji [2 ,3 ]
Wang, Xiao Hu [4 ]
机构
[1] China Univ Min & Technol Beijing, Dept Math, Beijing 100083, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
[3] Sichuan Normal Univ, VC & VR Key Lab, Chengdu 610068, Peoples R China
[4] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-autonomous stochastic fractional Ginzburg-Landau equation; random dynamical system; random attractor; additive noise; fractal dimension; LATTICE DYNAMICAL-SYSTEMS; WELL-POSEDNESS; SUFFICIENT; EXISTENCE; BEHAVIOR; DRIVEN; NOISE; SETS; WEAK;
D O I
10.1007/s10114-020-8407-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the dynamical behavior of solutions for non-autonomous stochastic fractional Ginzburg-Landau equations driven by additive noise with alpha epsilon (0,1). First, we give some conditions for bounding the fractal dimension of a random invariant set of non-autonomous random dynamical system. Second, we derive uniform estimates of solutions and establish the existence and uniqueness of tempered pullback random attractors for the equation in H. At last, we prove the finiteness of fractal dimension of random attractors.
引用
收藏
页码:318 / 336
页数:19
相关论文
共 50 条
  • [1] Fractal dimension of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise
    Lan, Yun
    Shu, Ji
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2019, 34 (02): : 274 - 300
  • [2] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg–Landau Equations
    Chun Xiao GUO
    Ji SHU
    Xiao Hu WANG
    [J]. Acta Mathematica Sinica,English Series, 2020, 36 (03) : 318 - 336
  • [3] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg—Landau Equations
    Chun Xiao Guo
    Ji Shu
    Xiao Hu Wang
    [J]. Acta Mathematica Sinica, English Series, 2020, 36 : 318 - 336
  • [4] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg–Landau Equations
    Chun Xiao GUO
    Ji SHU
    Xiao Hu WANG
    [J]. Acta Mathematica Sinica, 2020, 36 (03) : 318 - 336
  • [5] RANDOM ATTRACTORS FOR NON-AUTONOMOUS FRACTIONAL STOCHASTIC GINZBURG-LANDAU EQUATIONS ON UNBOUNDED DOMAINS
    Shu, Ji
    Zhang, Jian
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (06): : 2592 - 2618
  • [6] Existence and upper semicontinuity of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations
    Zhang, Jian
    Shu, Ji
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (04)
  • [7] Regularity of random attractors for non-autonomous stochastic discrete complex Ginzburg-Landau equations
    Yang, Yuan
    Shu, Ji
    Zhang, Jian
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (05) : 587 - 608
  • [8] Random attractors for stochastic discrete complex non-autonomous Ginzburg-Landau equations with multiplicative noise
    Peng Wang
    Yumei Huang
    Xiaohu Wang
    [J]. Advances in Difference Equations, 2015
  • [9] Random attractors for stochastic discrete complex non-autonomous Ginzburg-Landau equations with multiplicative noise
    Wang, Peng
    Huang, Yumei
    Wang, Xiaohu
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [10] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Reaction-diffusion Equations
    Shu Ji
    Bai Qianqian
    Huang Xin
    Zhang Jian
    [J]. JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 33 (04): : 377 - 394