Fractal dimension of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise

被引:18
|
作者
Lan, Yun [1 ]
Shu, Ji [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu, Sichuan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Non-autonomous stochastic fractional Ginzburg-Landau equation; random dynamical system; random attractor; multiplicative noise; fractal dimension; RANDOM DYNAMICAL-SYSTEMS; ASYMPTOTIC-BEHAVIOR; WELL-POSEDNESS; WAVE-EQUATION; EXISTENCE; DRIVEN; SUFFICIENT; SETS; WEAK;
D O I
10.1080/14689367.2018.1523368
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the asymptotic behaviour of solutions for non-autonomous stochastic fractional Ginzburg-Landau equations driven by multiplicative noise with . We first present some conditions for bounding the fractal dimension of a random invariant set of non-autonomous random dynamical system. Then we derive uniform estimates of solutions and establish the existence and uniqueness of tempered pullback random attractors for the equations in . At last, we prove the finiteness of fractal dimension of random attractors.
引用
收藏
页码:274 / 300
页数:27
相关论文
共 50 条
  • [1] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg-Landau Equations
    Guo, Chun Xiao
    Shu, Ji
    Wang, Xiao Hu
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (03) : 318 - 336
  • [2] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg–Landau Equations
    Chun Xiao GUO
    Ji SHU
    Xiao Hu WANG
    [J]. Acta Mathematica Sinica,English Series, 2020, 36 (03) : 318 - 336
  • [3] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg—Landau Equations
    Chun Xiao Guo
    Ji Shu
    Xiao Hu Wang
    [J]. Acta Mathematica Sinica, English Series, 2020, 36 : 318 - 336
  • [4] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg–Landau Equations
    Chun Xiao GUO
    Ji SHU
    Xiao Hu WANG
    [J]. Acta Mathematica Sinica, 2020, 36 (03) : 318 - 336
  • [5] Random attractors for stochastic discrete complex non-autonomous Ginzburg-Landau equations with multiplicative noise
    Peng Wang
    Yumei Huang
    Xiaohu Wang
    [J]. Advances in Difference Equations, 2015
  • [6] Random attractors for stochastic discrete complex non-autonomous Ginzburg-Landau equations with multiplicative noise
    Wang, Peng
    Huang, Yumei
    Wang, Xiaohu
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [7] DYNAMICS OF NON-AUTONOMOUS FRACTIONAL STOCHASTIC GINZBURG-LANDAU EQUATIONS WITH MULTIPLICATIVE NOISE
    Lan, Yun
    Shu, Ji
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2409 - 2431
  • [8] RANDOM ATTRACTORS FOR NON-AUTONOMOUS FRACTIONAL STOCHASTIC GINZBURG-LANDAU EQUATIONS ON UNBOUNDED DOMAINS
    Shu, Ji
    Zhang, Jian
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (06): : 2592 - 2618
  • [9] Existence and upper semicontinuity of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations
    Zhang, Jian
    Shu, Ji
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (04)
  • [10] Regularity of random attractors for non-autonomous stochastic discrete complex Ginzburg-Landau equations
    Yang, Yuan
    Shu, Ji
    Zhang, Jian
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (05) : 587 - 608