Pullback attractors for the non-autonomous complex Ginzburg-Landau type equation with p-Laplacian

被引:0
|
作者
Li, Fang [1 ]
You, Bo [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
来源
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
pullback attractor; non-autonomous; p-laplacian; complex Ginzburg-Landau type equations; Sobolev compactness embedding theorem; asymptotic a priori estimates; REACTION-DIFFUSION EQUATIONS; MONOTONICITY METHOD; GLOBAL ATTRACTORS; COCYCLE ATTRACTORS; CAUCHY-PROBLEM; LOCAL SPACES; WEAK; DIMENSION;
D O I
10.15388/NA.2015.2.6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the long-time behavior of the non-autonomous complex Ginzburg-Landau type equation with p-Laplacian. We first prove the existence of pullback absorbing sets in L-2 (Omega) boolean AND W-0(1,p) (Omega) boolean AND L-q (Omega) for the process {U (t, tau)}(t >=tau) corresponding to the non-autonomous complex Ginzburg-Landau type equation with p-Laplacian. Next, the existence of a pullback attractor in L-2 (Omega) is established by the Sobolev compactness embedding theorem. Finally, we prove the existence of a pullback attractor in W-0(1,p) (Omega) for the process {U (t, tau)}(t >=tau) by asymptotic a priori estimates.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 50 条