Existence and upper semicontinuity of pullback attractors for non-autonomous p-Laplacian parabolic problems

被引:22
|
作者
Simsen, Jacson [1 ]
Nascimento, Marcelo J. D. [2 ]
Simsen, Mariza S. [1 ]
机构
[1] Univ Fed Itajuba, Inst Matemat Comp, BR-37500903 Itajuba, MG, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Non-autonomous parabolic problems; p-Laplacian; Pullback attractors; Upper semicontinuity; UNIFORM ATTRACTORS;
D O I
10.1016/j.jmaa.2013.12.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of parabolic p-Laplacian problems of the form partial derivative u/partial derivative (t) - div (DA (t) I nu x (t)1P-2VuA (t)) + I uA (t) IP-2uA (t) = B(t,uA(t)) ut in a bounded smooth domain Q in IV, where n 1, p> 2, DA E L'([T-1,1] x S-2) with 0 < DA(t,x) m a.e. in [7, T] x fl, A E [0, co) and for each A E [0, infinity) we have IDA (s,x) - DA (t,x)I CA Is - trA for all x E Q, s, t E [T, 71 for some positive constants 0A and CA. Moreover, DA DA in L-infinity([gamma,lambda 1 x 12) as -> Al. We prove that for each A E [0,00) the evolution process of this problem has a pullback attractor and we show that the family of pullback attractors behaves upper semicontinuously at lambda(i). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:685 / 699
页数:15
相关论文
共 50 条
  • [1] Continuity Properties of Pullback and Pullback Exponential Attractors for Non-autonomous Plate with p-Laplacian
    Aouadi, Moncef
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 89 (01):
  • [2] UPPER SEMICONTINUITY OF PULLBACK ATTRACTORS FOR NON-AUTONOMOUS GENERALIZED 2D PARABOLIC EQUATIONS
    Park, Jong Yeoul
    Park, Sun-Hye
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (06) : 1149 - 1159
  • [3] WEAK PULLBACK MEAN RANDOM ATTRACTORS FOR NON-AUTONOMOUS p-LAPLACIAN EQUATIONS
    Gu, Anhui
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (07): : 3863 - 3878
  • [4] UPPER SEMICONTINUITY OF PULLBACK ATTRACTORS FOR NON-AUTONOMOUS KIRCHHOFF WAVE EQUATIONS
    Yang, Zhijian
    Li, Yanan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (09): : 4899 - 4912
  • [5] Existence and upper semicontinuity of global attractors for a p-Laplacian inclusion
    Simsen, Jacson
    Neres Junior, Edson N.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2015, 33 (01): : 233 - 243
  • [6] EXISTENCE AND UPPER SEMICONTINUITY OF (L2, Lq) PULLBACK ATTRACTORS FOR A STOCHASTIC p-LAPLACIAN EQUATION
    Liu, Linfang
    Fu, Xianlong
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (02) : 443 - 473
  • [7] UPPER SEMICONTINUITY OF ATTRACTORS AND CONTINUITY OF EQUILIBRIUM SETS FOR PARABOLIC PROBLEMS WITH DEGENERATE p-LAPLACIAN
    Bruschi, Simone M.
    Gentile, Claudia B.
    Primo, Marcos R. T.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [8] PULLBACK ATTRACTORS AND UPPER SEMICONTINUITY FOR NON-AUTONOMOUS EXTENSIBLE TWO-BEAMS
    Aouadi, Moncef
    Guerine, Souad
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, : 3599 - 3628
  • [9] Pullback attractors for the non-autonomous complex Ginzburg-Landau type equation with p-Laplacian
    Li, Fang
    You, Bo
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2015, 20 (02): : 233 - 248
  • [10] Uniform attractors for non-autonomous p-Laplacian equations
    Chen, Guang-xia
    Zhong, Cheng-Kui
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) : 3349 - 3363