Spatio-temporal modeling and prediction of CO concentrations in Tehran city

被引:0
|
作者
Rivaz, Firoozeh [1 ,2 ]
Mohammadzadeh, Mohsen [1 ]
Khaledi, Majid Jafari [1 ]
机构
[1] Tarbiat Modares Univ, Dept Stat, Tehran, Iran
[2] Shahid Beheshti Univ Med Sci, Dept Stat, Tehran, Iran
关键词
air pollution; carbon monoxide; spatio-temporal prediction; product-sum model; empirical Bayes; COVARIANCE-MODELS;
D O I
10.1080/02664763.2010.545108
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
One of the most important agents responsible for high pollution in Tehran is carbon monoxide. Prediction of carbon monoxide is of immense help for sustaining the inhabitants' health level. In this paper, motivated by the statistical analysis of carbon monoxide using the empirical Bayes approach, we deal with the issue of prior specification for the model parameters. In fact, the hyperparameters ( the parameters of the prior law) are estimated based on a sampling-based method which depends only on the specification of the marginal spatial and temporal correlation structures. We compare the predictive performance of this approach with the type II maximum likelihood method. Results indicate that the proposed procedure performs better for this data set.
引用
收藏
页码:1995 / 2007
页数:13
相关论文
共 50 条
  • [31] Modeling spatio-temporal field evolution
    A. Borštnik Bračič
    I. Grabec
    E. Govekar
    [J]. The European Physical Journal B, 2009, 69 : 529 - 538
  • [32] Spatio-temporal BRDF: Modeling and synthesis
    Meister, Daniel
    Pospisil, Adam
    Sato, Imari
    Bittner, Jiri
    [J]. COMPUTERS & GRAPHICS-UK, 2021, 97 : 279 - 291
  • [33] Modeling spatio-temporal field evolution
    Borstnik Bracic, A.
    Grabec, I.
    Govekar, E.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2009, 69 (04): : 529 - 538
  • [34] Spatio-temporal modeling in the farmyard domain
    Magee, DR
    Boyle, RD
    [J]. ARTICULATED MOTION AND DEFORMABLE OBJECTS, PROCEEDINGS, 2000, 1899 : 83 - 95
  • [35] Spatio-Temporal Modeling of Legislation and Votes
    Wang, Eric
    Salazar, Esther
    Dunson, David
    Carin, Lawrence
    [J]. BAYESIAN ANALYSIS, 2013, 8 (01): : 233 - 267
  • [36] Spatio-Temporal Modeling of Electric Loads
    Shi, Jie
    Liu, Yang
    Yu, Nanpeng
    [J]. 2017 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2017,
  • [37] Towards a spatio-temporal analysis of pesticide concentrations
    Jiao, Shoubo
    Sonmez, Ozan
    Iong, Daniel
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [38] Spatio-Temporal Analysis for Smart City Data
    Bermudez-Edo, Maria
    Barnaghi, Payam
    [J]. COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 1841 - 1845
  • [39] A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process
    Rao, T. Subba
    Terdik, Gyorgy
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (06) : 936 - 959
  • [40] A Novel Spatio-Temporal Adaptive Prediction Modeling Strategy for Industrial Production Process
    Xie, Sen
    Hua, Yuyang
    Lu, Shan
    Li, Xinchao
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72