SHIFTED GEGENBAUER-GAUSS COLLOCATION METHOD FOR SOLVING FRACTIONAL NEUTRAL FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH PROPORTIONAL DELAYS

被引:18
|
作者
Hafez, R. M. [1 ]
Youssri, Y. H. [2 ]
机构
[1] Matrouh Univ, Fac Educ, Dept Math, Matrouh, Egypt
[2] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2022年 / 46卷 / 06期
关键词
Neutral fractional functional-differential equations; proportional delay; collocation method; shifted Gegenbauer-Gauss quadrature; shifted Gegenbauer polynomials; INITIAL-VALUE PROBLEMS; NUMERICAL-SOLUTION; CALCULUS; ORDER;
D O I
10.46793/KgJMat2206.981H
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the shifted Gegenbauer-Gauss collocation (SGGC) method is applied to fractional neutral functional-differential equations with proportional delays. The technique we have used is based on shifted Gegenbauer polynomials and Gauss quadrature integration. The shifted Gegenbauer-Gauss method reduces solving the generalized fractional pantograph equation fractional neutral functional-differential equations to a system of algebraic equations. Reasonable numerical results are obtained by selecting few shifted Gegenbauer-Gauss collocation points. Numerical results demonstrate its accuracy, and versatility of the proposed techniques.
引用
收藏
页码:981 / 996
页数:16
相关论文
共 50 条