Remarks on Normalized Solutions for L2-Critical Kirchhoff Problems

被引:8
|
作者
Zeng, Yonglong [1 ,2 ]
Chen, Kuisheng [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Machinery & Automat, Wuhan 430065, Peoples R China
[2] Res Inst Wuhan Iron & Steel Grp Corp, Wuhan 430080, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2016年 / 20卷 / 03期
关键词
Kirchhoff equation; L-2-critical; Minimization problems; Variational method; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-POISSON; POSITIVE SOLUTIONS; R-N; EQUATIONS; EXISTENCE; CALCULUS; R-3;
D O I
10.11650/tjm.20.2016.6548
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a constraint minimization problem on S-c = {u epsilon H-1 c, c epsilon (0, c*)} for the following L-2-critical Kirchhoff type functional: E-alpha(u) =a/2 integral(RN) vertical bar del u vertical bar(2) dx + b/4 (integral(RN) vertical bar del vertical bar(2) dx)(2) + 1/alpha+2 integral(RN) V (x) vertical bar u vertical bar(alpha+2) dx - N/2N+8 integral(R2) vertical bar u vertical bar(2N+8/N) dx where N <= 3, a, b > 0 are constants, a epsilon [0, 8/N) and V(x) epsilon L infinity (R-N) is a suitable potential. We prove that the problem has at least one minimizer if alpha epsilon [2, 8/N) and the energy of the minimization problem is negative. Moreover, some non-existence results are obtained when the energy of the problem equals to zero.
引用
收藏
页码:617 / 627
页数:11
相关论文
共 50 条