Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases

被引:31
|
作者
Chen, Sitong [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Tang, Xianhua [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, AI Cuza 13, Craiova 200585, Romania
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2021年 / 84卷 / 01期
基金
中国国家自然科学基金;
关键词
Kirchhoff problem; Normalized solution; Concentration-compactness; Indefinite potential; L-2-supercritical growth; L-2-subcritical growth; SCHRODINGER-POISSON; PRESCRIBED L-2-NORM; NODAL SOLUTIONS; EXISTENCE; WAVES; NORM;
D O I
10.1007/s00245-020-09661-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of normalized solutions to the following Kirchhoff-type equation {-(a + b integral(R3) vertical bar del u vertical bar(2)dx) Delta u - lambda u = K(x) f(u), x is an element of R-3; u is an element of H-1(R-3) where a, b > 0, lambda is unknown and appears as a Lagrange multiplier, K is an element of C(R-3, R+) with 0 < lim(vertical bar y vertical bar ->infinity) K(y) <= inf(R3) K, and f is an element of C(R, R) satisfies general L-2-supercritical or L-2-subcritical conditions. We introduce some new analytical techniques in order to exclude the vanishing and the dichotomy cases of minimizing sequences due to the presence of the potential K and the lack of the homogeneity of the nonlinearity f. This paper extends to the nonautonomous case previous results on prescribed L-2-norm solutions of Kirchhoff problems.
引用
收藏
页码:773 / 806
页数:34
相关论文
共 50 条
  • [1] Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases
    Sitong Chen
    Vicenţiu D. Rădulescu
    Xianhua Tang
    Applied Mathematics & Optimization, 2021, 84 : 773 - 806
  • [2] NORMALIZED SOLUTIONS OF THE AUTONOMOUS KIRCHHOFF EQUATION WITH SOBOLEV CRITICAL EXPONENT: SUB- AND SUPER-CRITICAL CASES
    LI, Quangqing
    Radulescu, Vicentiu D.
    Zhang, Jian
    Zhao, X. I. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (02) : 663 - 678
  • [3] Normalized Solutions to the Kirchhoff Equation with Potential Term: Mass Super-Critical Case
    Wang, Qun
    Qian, Aixia
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
  • [4] Normalized Solutions to the Kirchhoff Equation with Potential Term: Mass Super-Critical Case
    Qun Wang
    Aixia Qian
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [5] Sub- and Super-critical Water Depolymerization of Biomass
    Demirbas, A.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2010, 32 (12) : 1100 - 1110
  • [6] Critical Resistance Affecting Sub- to Super-Critical Transition Flow by Vegetation
    Pasha, Ghufran Ahmed
    Tanaka, Norio
    JOURNAL OF EARTHQUAKE AND TSUNAMI, 2019, 13 (01)
  • [7] Phenomenological Study on the Fuel Injecting into Sub- and Super-Critical Environments
    Ma Z.
    Jia Y.
    Chen Z.
    Li Y.
    Hu E.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2018, 52 (09): : 127 - 133
  • [8] Normalized solutions to nonautonomous Kirchhoff equation
    Qiu, Xin
    Ou, Zeng Qi
    Lv, Ying
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (03): : 457 - 486
  • [9] Catalytic Depolymerization of Alkali Lignin in Sub- and Super-critical Ethanol
    Guo, Daliang
    Liu, Bei
    Tang, Yanjun
    Zhang, Junhua
    Xia, XinXing
    Tong, Shuhua
    BIORESOURCES, 2017, 12 (03): : 5001 - 5016
  • [10] Distribution and Characterizations of Liquefaction of Celluloses in Sub- and Super-Critical Ethanol
    Zheng, Chao-Yang
    Tao, Hong-Xiu
    Xie, Xin-An
    BIORESOURCES, 2013, 8 (01): : 648 - 662