Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases

被引:31
|
作者
Chen, Sitong [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Tang, Xianhua [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, AI Cuza 13, Craiova 200585, Romania
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2021年 / 84卷 / 01期
基金
中国国家自然科学基金;
关键词
Kirchhoff problem; Normalized solution; Concentration-compactness; Indefinite potential; L-2-supercritical growth; L-2-subcritical growth; SCHRODINGER-POISSON; PRESCRIBED L-2-NORM; NODAL SOLUTIONS; EXISTENCE; WAVES; NORM;
D O I
10.1007/s00245-020-09661-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of normalized solutions to the following Kirchhoff-type equation {-(a + b integral(R3) vertical bar del u vertical bar(2)dx) Delta u - lambda u = K(x) f(u), x is an element of R-3; u is an element of H-1(R-3) where a, b > 0, lambda is unknown and appears as a Lagrange multiplier, K is an element of C(R-3, R+) with 0 < lim(vertical bar y vertical bar ->infinity) K(y) <= inf(R3) K, and f is an element of C(R, R) satisfies general L-2-supercritical or L-2-subcritical conditions. We introduce some new analytical techniques in order to exclude the vanishing and the dichotomy cases of minimizing sequences due to the presence of the potential K and the lack of the homogeneity of the nonlinearity f. This paper extends to the nonautonomous case previous results on prescribed L-2-norm solutions of Kirchhoff problems.
引用
收藏
页码:773 / 806
页数:34
相关论文
共 50 条
  • [41] Positive solutions for slightly super-critical elliptic equations in contractible domains
    Molle, R
    Passaseo, D
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (05) : 459 - 462
  • [42] Existence of Normalized Solutions for Mass Super-Critical Quasilinear Schrödinger Equation with Potentials
    Gao, Fengshuang
    Guo, Yuxia
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (11)
  • [43] Gas-phase unsteadiness and its influence on droplet vaporization in sub- and super-critical environments
    Zhu, GS
    Reitz, RD
    Aggarwal, SK
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (16) : 3081 - 3093
  • [44] A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water
    Zanetti-Polzi, Laura
    Daidone, Isabella
    Amadei, Andrea
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (04):
  • [45] Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol
    Peng, Jun
    Chen, Ping
    Lou, Hui
    Zheng, Xiaoming
    BIORESOURCE TECHNOLOGY, 2009, 100 (13) : 3415 - 3418
  • [46] Alcoholysis of poly(ethylene terephthalate) to produce dioctyl terephthalate with sub- and super-critical isooctyl alcohol
    Liu, Feng
    Chen, Jinyang
    Li, Zhilian
    Ni, Pei
    Ji, Yimei
    Meng, Qingyang
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2013, 99 : 16 - 22
  • [47] Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations
    Hu, Tingxi
    Tang, Chun-Lei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
  • [48] Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations
    Tingxi Hu
    Chun-Lei Tang
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [49] NORMALIZED SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH COMBINED NONLINEARITIES: THE SOBOLEV CRITICAL CASE
    Feng, Xiaojing
    Liu, Haidong
    Zhang, Zhitao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (08) : 2935 - 2972
  • [50] Normalized solutions to the fractional Kirchhoff equations with a perturbation
    Liu, Lintao
    Chen, Haibo
    Yang, Jie
    APPLICABLE ANALYSIS, 2023, 102 (04) : 1229 - 1249