Multi-objective evolutionary optimization of subsonic airfoils by kriging approximation and evolution control

被引:0
|
作者
D'Angelo, S [1 ]
Minisci, EA [1 ]
机构
[1] Politecn Torino, I-10129 Turin, Italy
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work focuses on multi-objective evolutionary optimization by approximation function. It uses the new general concept of evolution control to on-line enriching the database of correct solutions, which are the basis of the learning procedure for the kriging approximators. Substantially, given an initial very poor model approximation (small size of the database), the database, and consequently the models, is enriched by evaluating part of the individuals of the optimization process. The technique showed being efficient for the considered aerodynamic problem, by requiring few hundreds of true computations when the dimensionality of the problem is 5.
引用
收藏
页码:1262 / 1267
页数:6
相关论文
共 50 条
  • [41] Interleaving Guidance in Evolutionary Multi-Objective Optimization
    Lam Thu Bui
    Kalyanmoy Deb
    Hussein A.Abbass
    Daryl Essam
    [J]. Journal of Computer Science & Technology, 2008, 23 (01) : 44 - 63
  • [42] Multi-objective evolutionary algorithms for structural optimization
    Coello, CAC
    Pulido, GT
    Aguirre, AH
    [J]. COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2244 - 2248
  • [43] A study on multiform multi-objective evolutionary optimization
    Zhang, Liangjie
    Xie, Yuling
    Chen, Jianjun
    Feng, Liang
    Chen, Chao
    Liu, Kai
    [J]. MEMETIC COMPUTING, 2021, 13 (03) : 307 - 318
  • [44] On test functions for evolutionary multi-objective optimization
    Okabe, T
    Jin, YC
    Olhofer, M
    Sendhoff, B
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN VIII, 2004, 3242 : 792 - 802
  • [45] An evolutionary algorithm for constrained multi-objective optimization
    Jiménez, F
    Gómez-Skarmeta, AF
    Sánchez, G
    Deb, K
    [J]. CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1133 - 1138
  • [46] Weighted preferences in evolutionary multi-objective optimization
    Friedrich, Tobias
    Kroeger, Trent
    Neumann, Frank
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (02) : 139 - 148
  • [47] A study on multiform multi-objective evolutionary optimization
    Liangjie Zhang
    Yuling Xie
    Jianjun Chen
    Liang Feng
    Chao Chen
    Kai Liu
    [J]. Memetic Computing, 2021, 13 : 307 - 318
  • [48] A Parallel Framework for Multi-objective Evolutionary Optimization
    Dasgupta, Dipankar
    Becerra, David
    Banceanu, Alex
    Nino, Fernando
    Simien, James
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [49] Handling uncertainties in evolutionary multi-objective optimization
    Tan, Kay Chen
    Goh, Chi Keong
    [J]. COMPUTATIONAL INTELLIGENCE: RESEARCH FRONTIERS, 2008, 5050 : 262 - +
  • [50] Evolutionary constrained multi-objective optimization: a review
    Jing Liang
    Hongyu Lin
    Caitong Yue
    Xuanxuan Ban
    Kunjie Yu
    [J]. Vicinagearth, 1 (1):