Weighted preferences in evolutionary multi-objective optimization

被引:17
|
作者
Friedrich, Tobias [1 ]
Kroeger, Trent [2 ]
Neumann, Frank [2 ]
机构
[1] Max Planck Inst Informat, Bremen, Germany
[2] Univ Adelaide, Sch Comp Sci, Adelaide, SA, Australia
关键词
Evolutionary algorithms; Multi-objective optimization; User preferences; ALGORITHM; DESIGN;
D O I
10.1007/s13042-012-0083-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary algorithms have been widely used to tackle multi-objective optimization problems. Incorporating preference information into the search of evolutionary algorithms for multi-objective optimization is of great importance as it allows one to focus on interesting regions in the objective space. Zitzler et al. have shown how to use a weight distribution function on the objective space to incorporate preference information into hypervolume-based algorithms. We show that this weighted information can easily be used in other popular EMO algorithms as well. Our results for NSGA-II and SPEA2 show that this yields similar results to the hypervolume approach and requires less computational effort.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 50 条
  • [1] Weighted Preferences in Evolutionary Multi-objective Optimization
    Friedrich, Tobias
    Kroeger, Trent
    Neumann, Frank
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 291 - +
  • [2] Weighted preferences in evolutionary multi-objective optimization
    Tobias Friedrich
    Trent Kroeger
    Frank Neumann
    International Journal of Machine Learning and Cybernetics, 2013, 4 : 139 - 148
  • [3] Evolutionary Multi-Objective Optimization
    Deb, Kalyanmoy
    GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2577 - 2602
  • [4] Evolutionary multi-objective optimization
    Coello Coello, Carlos A.
    Hernandez Aguirre, Arturo
    Zitzler, Eckart
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) : 1617 - 1619
  • [5] Preferences-Based Choice Prediction in Evolutionary Multi-objective Optimization
    Aggarwal, Manish
    Heinermann, Justin
    Oehmcke, Stefan
    Kramer, Oliver
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2017, PT I, 2017, 10199 : 715 - 724
  • [6] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [7] Multi-Objective Factored Evolutionary Optimization and the Multi-Objective Knapsack Problem
    Peerlinck, Amy
    Sheppard, John
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [8] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [9] Evolutionary Multi-objective Diversity Optimization
    Anh Viet Do
    Guo, Mingyu
    Neumann, Aneta
    Neumann, Frank
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT IV, PPSN 2024, 2024, 15151 : 117 - 134
  • [10] Evolutionary multi-objective optimization and visualization
    Obayashi, S
    New Developments in Computational Fluid Dynamics, 2005, 90 : 175 - 185