Intrinsic polyatomic defects in Sc2(WO4)3

被引:15
|
作者
Zhou, Yongkai [1 ]
Rao, R. Prasada [1 ]
Adams, Stefan [1 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117574, Singapore
关键词
Ion conducting solids; Scandium tungstate; Polyatomic defect; Computer simulations; Lattice dynamics; Tungstate migration; TRIVALENT ION CONDUCTION; SIMULATION; TRANSPORT; PROGRAM; SOLIDS;
D O I
10.1016/j.ssi.2010.06.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The intrinsic formation of polyatomic defects in Sc-2(WO4)(3)-type structures is studied by Mott Littleton calculations and Molecular Dynamics simulations. Defects involving the WO42- tetrahedron are found to be energetically favorable when compared to isolated W and O defects. WO42- Frenkel and (2Sc(3+), 3WO(4)(2-)) Schottky defects exhibit formation energies of 1.23 eV and 1.97 eV, respectively and therefore may occur as intrinsic defects in Sc-2(WO4)(3) at elevated temperatures. WO42- vacancy and interstitial migration processes have been simulated by classical Molecular Dynamics simulations. The interstitial defect exhibits a nearly 10 times higher mobility (with a migration energy of 0.68 eV). than the vacancy mechanism (with a slightly higher migration energy of 0.74 eV) and thus should dominate the overall ionic conduction. Still both models reproduce the experimental activation energy (0.67 eV) nearly within experimental uncertainty. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 37
页数:4
相关论文
共 50 条
  • [31] CRYSTAL STRUCTURE OF TRANSITION-METAL MOLYBDATES AND TUNGSTATES .2. DIAMAGNETIC SC2(WO4)3
    ABRAHAMS, SC
    BERNSTEIN, JL
    JOURNAL OF CHEMICAL PHYSICS, 1966, 45 (08): : 2745 - +
  • [32] Ion conducting behavior in (Lu1-xMx)2(WO4)3 solid solutions (M = Sm, Ho, Er) with the Sc2(WO4)3 type structure
    Imanaka, N
    Köhler, J
    Tamura, S
    Adachi, GY
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2002, (01) : 105 - 109
  • [33] Anti-thermal quenching upconversion luminescence of Cr3+in Sc2(WO4)3:Yb/Cr
    Wei, Yang
    Wu, Shuaihao
    Chen, Ran
    Sun, Chao
    Wang, Feng
    Ding, Xinru
    Wang, Hui
    Lu, Yanqing
    Huang, Ling
    NANO RESEARCH, 2025, 18 (02)
  • [34] Sc2(WO4)3 and Sc2(MoO4)3 and Their Solid Solutions: 45Sc, 17O, and 27Al MAS NMR Results at Ambient and High Temperature
    Kim, Namjun
    Stebbins, Jonathan F.
    CHEMISTRY OF MATERIALS, 2009, 21 (02) : 309 - 315
  • [35] Structural evolution and stability of Sc2(WO4)3 after discharge in a sodium-based electrochemical cell
    Andersen, Henrik L.
    Al Bahri, Othman K.
    Tsarev, Sergey
    Johannessen, Bernt
    Schulz, Bernd
    Liu, Junnan
    Brand, Helen E. A.
    Christensen, Mogens
    Sharma, Neeraj
    DALTON TRANSACTIONS, 2018, 47 (04) : 1251 - 1260
  • [36] A comparative study of negative thermal expansion materials Sc2(MoO4)3 and Al2(WO4)3 crystals
    Paraguassu, W.
    Maczka, M.
    Souza Filho, A. G.
    Freire, P. T. C.
    Melo, F. E. A.
    Mendes Filho, J.
    VIBRATIONAL SPECTROSCOPY, 2007, 44 (01) : 69 - 77
  • [37] THE LUMINESCENCE OF BETA-ZR2(PO4)2SO4 IN COMPARISON TO THAT OF ISOMORPHOUS SC2(WO4)3
    BLASSE, G
    PIFFARD, Y
    STRUYE, L
    CHEMICAL PHYSICS LETTERS, 1988, 147 (05) : 514 - 516
  • [38] Sc2(WO4)3型结构的新型阳离子导电固体电解质
    许孙曲
    中国钼业, 2002, (01) : 47 - 47
  • [39] Exploration of the high temperature phase evolution of electrochemically modified Sc2(WO4)3via potassium discharge
    Liu, Junnan
    Haworth, Abby R.
    Johnston, Karen E.
    Goonetilleke, Damian
    Sharma, Neeraj
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (10) : 2718 - 2726
  • [40] PHASE DIAGRAM OF MA2WO4-SC2(WO4)3 SYSTEM
    KARPOV, VN
    RODE, EY
    SOROKINA, OV
    ZHURNAL NEORGANICHESKOI KHIMII, 1971, 16 (06): : 1735 - &