Structural evolution and stability of Sc2(WO4)3 after discharge in a sodium-based electrochemical cell

被引:10
|
作者
Andersen, Henrik L. [1 ,2 ,3 ]
Al Bahri, Othman K. [3 ]
Tsarev, Sergey [4 ]
Johannessen, Bernt [5 ]
Schulz, Bernd [3 ]
Liu, Junnan [3 ]
Brand, Helen E. A. [5 ]
Christensen, Mogens [1 ,2 ]
Sharma, Neeraj [3 ]
机构
[1] Aarhus Univ, Dept Chem, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark
[2] Aarhus Univ, iNANO, DK-8000 Aarhus C, Denmark
[3] UNS WAustralia, Sch Chem, Sydney, NSW 2052, Australia
[4] Skolkovo Inst Sci & Technol, Nobel St 3, Moscow 143026, Russia
[5] Australian Synchrotron, Clayton, Vic 3168, Australia
基金
澳大利亚研究理事会;
关键词
THERMAL-EXPANSION; CHALLENGES; BEAMLINE; CRYSTAL;
D O I
10.1039/c7dt04374k
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Sc-2(WO4)(3), prepared by solid state synthesis and constructed as an electrode, is discharged to different states in half-cell batteries, versus a Na negative electrode. The structural evolution of the Na-containing electrodes is studied with synchrotron powder X-ray diffraction (PXRD) revealing an increase in microstrain and a gradual amorphization taking place with increasing Na content in the electrode. This indicates that a conversion reaction takes place in the electrochemical cell. X-ray absorption spectroscopy (XAS) at the tungsten L3 absorption edge shows a reduction in the tungsten oxidation state. Variable temperature (VT) PXRD shows that the Sc-2(WO4)(3) electrode remains relatively stable at higher temperatures, while the Na-containing samples undergo a number of phase transitions and/or turn amorphous above similar to 400 degrees C. Although, Sc-2(WO4)(3) is a negative thermal expansion (NTE) material only a subtle change of the thermal expansion is found below 400 degrees C for the Na-containing electrodes. This work shows the complexity in employing an electrochemical cell to produce Na-containing Sc-2(WO4)(3) and the subsequent phase transitions.
引用
收藏
页码:1251 / 1260
页数:10
相关论文
共 50 条
  • [1] Negative thermal expansion in Sc2(WO4)3
    Evans, JSO
    Mary, TA
    Sleight, AW
    JOURNAL OF SOLID STATE CHEMISTRY, 1998, 137 (01) : 148 - 160
  • [2] Intrinsic polyatomic defects in Sc2(WO4)3
    Zhou, Yongkai
    Rao, R. Prasada
    Adams, Stefan
    SOLID STATE IONICS, 2011, 192 (01) : 34 - 37
  • [3] LUMINESCENCE OF DOPED AND UNDOPED AL2(WO4)3, SC2(WO4)3, AND LU2(WO4)3
    BLASSE, G
    OUWERKERK, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1980, 127 (02) : 429 - 434
  • [4] Trivalent ion conduction of the Sc2(WO4)3-Gd2(WO4)3 system
    Kobayashi, Y
    Egawa, T
    Okazaki, Y
    Tamura, S
    Imanaka, I
    Adachi, G
    SOLID STATE IONICS, 1998, 111 (1-2) : 59 - 65
  • [5] Trivalent ion conduction of the Sc2(WO4)3-Lu2(WO4)3 system
    Kobayashi, Y
    Egawa, T
    Tamura, S
    Imanaka, N
    Adachi, G
    SOLID STATE IONICS, 1999, 118 (3-4) : 325 - 330
  • [6] Negative thermal expansion behavior in orthorhombic Sc2(MoO4)3 and Sc2(WO4)3
    Gupta, Mayanak K.
    Mittal, Ranjan
    Chaploe, Samrath L.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (12)
  • [7] Exploration of the high temperature phase evolution of electrochemically modified Sc2(WO4)3via potassium discharge
    Liu, Junnan
    Haworth, Abby R.
    Johnston, Karen E.
    Goonetilleke, Damian
    Sharma, Neeraj
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (10) : 2718 - 2726
  • [8] Charge Transport by Polyatomic Anion Diffusion in SC2(WO4)3
    Zhou, Yongkai
    Adams, Stefan
    Rao, R. Prasada
    Edwards, Doreen D.
    Neiman, Arkady
    Pestereva, N.
    CHEMISTRY OF MATERIALS, 2008, 20 (20) : 6335 - 6345
  • [9] SPECTROSCOPIC AND LASER PROPERTIES OF CR-3+-DOPED AL2(WO4)3 AND SC2(WO4)3
    PETERMANN, K
    MITZSCHERLICH, P
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1987, 23 (07) : 1122 - 1126
  • [10] Trivalent ion conduction in the Sc2(WO4)3 type structure
    Imanaka, N
    Kobayashi, Y
    Egawa, T
    Tamura, S
    Adachi, G
    RARE EARTHS '98, 1999, 315-3 : 331 - 338