Structural evolution and stability of Sc2(WO4)3 after discharge in a sodium-based electrochemical cell

被引:10
|
作者
Andersen, Henrik L. [1 ,2 ,3 ]
Al Bahri, Othman K. [3 ]
Tsarev, Sergey [4 ]
Johannessen, Bernt [5 ]
Schulz, Bernd [3 ]
Liu, Junnan [3 ]
Brand, Helen E. A. [5 ]
Christensen, Mogens [1 ,2 ]
Sharma, Neeraj [3 ]
机构
[1] Aarhus Univ, Dept Chem, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark
[2] Aarhus Univ, iNANO, DK-8000 Aarhus C, Denmark
[3] UNS WAustralia, Sch Chem, Sydney, NSW 2052, Australia
[4] Skolkovo Inst Sci & Technol, Nobel St 3, Moscow 143026, Russia
[5] Australian Synchrotron, Clayton, Vic 3168, Australia
基金
澳大利亚研究理事会;
关键词
THERMAL-EXPANSION; CHALLENGES; BEAMLINE; CRYSTAL;
D O I
10.1039/c7dt04374k
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Sc-2(WO4)(3), prepared by solid state synthesis and constructed as an electrode, is discharged to different states in half-cell batteries, versus a Na negative electrode. The structural evolution of the Na-containing electrodes is studied with synchrotron powder X-ray diffraction (PXRD) revealing an increase in microstrain and a gradual amorphization taking place with increasing Na content in the electrode. This indicates that a conversion reaction takes place in the electrochemical cell. X-ray absorption spectroscopy (XAS) at the tungsten L3 absorption edge shows a reduction in the tungsten oxidation state. Variable temperature (VT) PXRD shows that the Sc-2(WO4)(3) electrode remains relatively stable at higher temperatures, while the Na-containing samples undergo a number of phase transitions and/or turn amorphous above similar to 400 degrees C. Although, Sc-2(WO4)(3) is a negative thermal expansion (NTE) material only a subtle change of the thermal expansion is found below 400 degrees C for the Na-containing electrodes. This work shows the complexity in employing an electrochemical cell to produce Na-containing Sc-2(WO4)(3) and the subsequent phase transitions.
引用
收藏
页码:1251 / 1260
页数:10
相关论文
共 50 条
  • [21] BETA-ZR2(PO4)2SO4 - A ZIRCONIUM PHOSPHATO-SULFATE WITH A SC2(WO4)3 STRUCTURE - A COMPARISON BETWEEN GARNET, NASICON, AND SC2(WO4)3 STRUCTURE TYPES
    PIFFARD, Y
    VERBAERE, A
    KINOSHITA, M
    JOURNAL OF SOLID STATE CHEMISTRY, 1987, 71 (01) : 121 - 130
  • [22] New cation conducting solid electrolytes with the Sc2(WO4)3 type structure
    Köhler, J
    Imanaka, N
    Adachi, GY
    JOURNAL OF MATERIALS CHEMISTRY, 1999, 9 (06) : 1357 - 1362
  • [23] Sc2(WO4)3的高温快速合成及特性研究
    王少辉
    王玉梅
    唐山师范学院学报, 2010, 32 (02) : 55 - 58
  • [24] Sc2(MoO4)3 and Sc2(WO4)3: Halide Flux Growth of Single Crystals and 45Sc Solid-state NMR
    Balamurugan, Sarkarainadar
    Rodewald, Ute Ch.
    Harmening, Thomas
    van Wuellen, Leo
    Mohr, Daniel
    Eckert, Hellmut
    Poettgen, Rainer
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 2010, 65 (01): : 13 - 17
  • [25] Trivalent ion conduction in molybdates having Sc2(WO4)3-type structure
    Imanaka, N
    Ueda, T
    Okazaki, Y
    Tamura, S
    Adachi, G
    CHEMISTRY OF MATERIALS, 2000, 12 (07) : 1910 - 1913
  • [26] Novel polyanion conduction in Sc2(WO4)3 type negative thermal expansion oxides
    Zhou, Yongkai
    Neiman, Arkady
    Adams, Stefan
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (01): : 130 - 135
  • [27] Electronic state of trivalent ionic conductors with Sc2(WO4)3-type structure
    Imanaka, N
    Tamura, S
    Adachi, G
    Kowada, Y
    SOLID STATE IONICS, 2000, 130 (3-4) : 179 - 182
  • [28] Sc2(WO4)3负热膨胀材料合成及其热性能
    朱君君
    程晓农
    杨娟
    功能材料, 2011, 42 (03) : 553 - 556
  • [29] Carbon dioxide gas sensor with trivalent Sc3+ ion conducting Sc2(WO4)3 solid electrolyte
    Imanaka, N
    Kamikawa, M
    Tamura, S
    Adachi, G
    CHEMICAL SENSORS IV, PROCEEDINGS OF THE SYMPOSIUM, 1999, 99 (23): : 255 - 261
  • [30] M2WO4-SC2(WO4)3 SYSTEMS
    KARPOV, VN
    SOROKINA, OV
    ZHURNAL NEORGANICHESKOI KHIMII, 1973, 18 (06): : 1663 - 1668