Illustration of fairness in evolutionary multi-objective optimization

被引:11
|
作者
Friedrich, Tobias [1 ]
Horoba, Christian [2 ]
Neumann, Frank [1 ]
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
[2] TU Dortmund, LS 2, Fak Informat, D-44221 Dortmund, Germany
关键词
Evolutionary algorithms; Fairness; Multi-objective optimization; Running time analysis; Theory; EXPECTED RUNTIMES; ALGORITHMS; PLATEAUS;
D O I
10.1016/j.tcs.2010.09.023
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is widely assumed that evolutionary algorithms for multi-objective optimization problems should use certain mechanisms to achieve a good spread over the Pareto front. In this paper, we examine such mechanisms from a theoretical point of view and analyze simple algorithms incorporating the concept of fairness. This mechanism tries to balance the number of offspring of all individuals in the current population. We rigorously analyze the runtime behavior of different fairness mechanisms and present illustrative examples to point out situations, where the right mechanism can speed up the optimization process significantly. We also indicate drawbacks for the use of fairness by presenting instances, where the optimization process is slowed down drastically. (C) 2010 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:1546 / 1556
页数:11
相关论文
共 50 条
  • [31] A study on multiform multi-objective evolutionary optimization
    Liangjie Zhang
    Yuling Xie
    Jianjun Chen
    Liang Feng
    Chao Chen
    Kai Liu
    Memetic Computing, 2021, 13 : 307 - 318
  • [32] A Parallel Framework for Multi-objective Evolutionary Optimization
    Dasgupta, Dipankar
    Becerra, David
    Banceanu, Alex
    Nino, Fernando
    Simien, James
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [33] Weighted preferences in evolutionary multi-objective optimization
    Friedrich, Tobias
    Kroeger, Trent
    Neumann, Frank
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (02) : 139 - 148
  • [34] A Hybrid Framework for Evolutionary Multi-objective Optimization
    Sindhya, Karthik
    Miettinen, Kaisa
    Deb, Kalyanmoy
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (04) : 495 - 511
  • [35] Special Issue on Evolutionary Multi-objective Optimization
    Stewart, Theodor
    JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS, 2013, 20 (5-6) : 213 - 215
  • [36] Research on evolutionary multi-objective optimization algorithms
    Gong, Mao-Guo
    Jiao, Li-Cheng
    Yang, Dong-Dong
    Ma, Wen-Ping
    Ruan Jian Xue Bao/Journal of Software, 2009, 20 (02): : 271 - 289
  • [37] Interleaving guidance in evolutionary multi-objective optimization
    Bui, Lam Thu
    Deb, Kalyanmoy
    Abbass, Hussein A.
    Essam, Daryl
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2008, 23 (01) : 44 - 63
  • [38] Evolutionary constrained multi-objective optimization: a review
    Jing Liang
    Hongyu Lin
    Caitong Yue
    Xuanxuan Ban
    Kunjie Yu
    Vicinagearth, 1 (1):
  • [39] A hierarchical evolutionary approach to multi-objective optimization
    Mumford, CL
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 1944 - 1951
  • [40] An new evolutionary multi-objective optimization algorithm
    Mu, SJ
    Su, HY
    Chu, J
    Wang, YX
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 914 - 920