Temperature dependence of quantum dot fluorescence assisted by plasmonic nanoantennas

被引:12
|
作者
Le-Van, Q. [1 ,2 ]
Le Roux, X. [1 ,2 ]
Teperik, T. V. [1 ,2 ]
Habert, B. [3 ]
Marquier, F. [3 ]
Greffet, J. -J. [3 ]
Degiron, A. [1 ,2 ]
机构
[1] Univ Paris 11, Inst Elect Fondamentale, F-91405 Orsay, France
[2] CNRS, UMR 8622, F-91405 Orsay, France
[3] Univ Paris 11, CNRS, Inst Opt, Lab Charles Fabry, F-91127 Palaiseau, France
关键词
RADIATIVE DECAY; ENHANCEMENT; EMISSION; REGIMES; ARRAYS;
D O I
10.1103/PhysRevB.91.085412
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optical antennas based on noble metal nanoparticles can increase the photoluminescence of quantum dots, but the exact strength of this enhancement depends on the brightness (i.e., the intrinsic quantum yield eta(i)) of the emitters. Here we perform temperature-dependent measurements on a system of PbS colloidal quantum dots coupled with Au ring arrays that bring quantitative insight into this phenomenon. We show that although the boost in photoluminescence is lower at cryogenic temperatures where the nanocrystals become very bright emitters, the spectral signature of this enhancement is remarkably independent of eta(i). These observations remain true even at wavelengths where the losses by absorption in the metal nanoparticles considerably increase due to the excitation of localized plasmon resonances, in contradiction with standard theory that treats the emitters as a collection of two-level systems. We propose a mechanism in which the quantum dots are modeled as multilevel and inhomogeneously broadened emitters to account for these findings.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Quantum plasmonic nanoantennas
    Fitzgerald, Jamie M.
    Azadi, Sam
    Giannini, Vincenzo
    PHYSICAL REVIEW B, 2017, 95 (23)
  • [2] Fluorescence quenching by plasmonic nanoantennas
    Simovski, C. R.
    Mollaei, M. S. M.
    Voroshilov, P. M.
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [3] Collecting quantum dot fluorescence with a hybrid plasmonic probe
    Li, Ming
    Xiong, Xiao
    Yu, Le
    Zou, Chang-Ling
    Chen, Yang
    Liu, Di
    Feng, Lan-Tian
    Guo, Guo-Ping
    Guo, Guang-Can
    Ren, Xi-Feng
    OSA CONTINUUM, 2019, 2 (03) : 881 - 889
  • [4] Enhanced Photocurrent and Electrically Pumped Quantum Dot Emission from Single Plasmonic Nanoantennas
    Huang, Junyang
    Hu, Shu
    Kos, Dean
    Xiong, Yuling
    Jakob, Lukas A.
    Sanchez-Iglesias, Ana
    Guo, Chenyang
    Liz-Marzan, Luis M.
    Baumberg, Jeremy J.
    ACS NANO, 2024, 18 (04) : 3323 - 3330
  • [5] Perspective on molecular quantum plasmonic nanoantennas
    Fitzgerald, Jamie M.
    Giannini, Vincenzo
    JOURNAL OF OPTICS, 2017, 19 (06)
  • [6] Temperature dependence of quantum dot lasers
    Deppe, DG
    Park, G
    Shchekin, OB
    OPTOELECTRONIC MATERIALS AND DEVICES II, 2000, 4078 : 90 - 99
  • [7] Active Plasmonic Nanoantennas for Controlling Fluorescence Beams
    Li, Haibo
    Xu, Shuping
    Gu, Yuejiao
    Wang, Hailong
    Ma, Renping
    Lombardi, John R.
    Xu, Weiqing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (37): : 19154 - 19159
  • [8] On the temperature dependence of silicon quantum dot photoluminescence
    Nagornykh S.N.
    Pavlenkov V.I.
    Mikhaylov A.N.
    Belov A.I.
    Burdov V.A.
    Krasilnikova L.V.
    Kryzhkov D.I.
    Tetelbaum D.I.
    Russian Microelectronics, 2014, 43 (08) : 575 - 580
  • [9] Nanocrystal fluorescence in photonic bandgap microcavities and plasmonic nanoantennas
    Lukishova, Svetlana G.
    Winkler, Justin M.
    Mihaylova, Dilyana
    Liapis, Andreas
    Bissell, Luke J.
    Goldberg, David
    Menon, Vinod M.
    Shi, Zhimin
    Boyd, Robert W.
    Chen, Guanuing
    Prasad, Paras
    23RD INTERNATIONAL LASER PHYSICS WORKSHOP (LPHYS'14), 2015, 594
  • [10] Resonance fluorescence beyond the dipole approximation of a quantum dot in a plasmonic nanostructure
    Yang, Chun-Jie
    An, Jun-Hong
    PHYSICAL REVIEW A, 2016, 93 (05)