Fluorescence quenching by plasmonic nanoantennas

被引:13
|
作者
Simovski, C. R. [1 ,2 ]
Mollaei, M. S. M. [1 ]
Voroshilov, P. M. [2 ]
机构
[1] Aalto Univ, Dept Elect & Nanoengn, POB 15500, FI-00076 Aalto, Finland
[2] Univ ITMO, Kronverkski 47, St Petersburg 197101, Russia
关键词
QUANTUM-DOT; ENHANCEMENT; MODEL;
D O I
10.1103/PhysRevB.101.245421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Generalizing a previously developed analytical model of metal-enhanced fluorescence to the case of the strong coupling between a quantum emitter and a plasmonic nanoantenna, we study the fluorescence quenching in the strong coupling regime. When the nanoantenna is a simple Ag sphere and the quantum emitter approaches to its surface the fluorescence turns suppressed (both dipole and quadrupole moments of the system vanish) in the whole spectral range. However, if the nanoantenna is a plasmonic dimer with a tiny gap between two plasmonic nanoparticles, and the coupling grows due to the increase of the emitter dipole moment, the fluorescence quenching never occurs. This unexpected result explains why the nanolaser regime can be achieved with these nanoantennas, whereas a simple nanosphere coupled to quantum emitters can be a spaser.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Active Plasmonic Nanoantennas for Controlling Fluorescence Beams
    Li, Haibo
    Xu, Shuping
    Gu, Yuejiao
    Wang, Hailong
    Ma, Renping
    Lombardi, John R.
    Xu, Weiqing
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (37): : 19154 - 19159
  • [2] Nanocrystal fluorescence in photonic bandgap microcavities and plasmonic nanoantennas
    Lukishova, Svetlana G.
    Winkler, Justin M.
    Mihaylova, Dilyana
    Liapis, Andreas
    Bissell, Luke J.
    Goldberg, David
    Menon, Vinod M.
    Shi, Zhimin
    Boyd, Robert W.
    Chen, Guanuing
    Prasad, Paras
    [J]. 23RD INTERNATIONAL LASER PHYSICS WORKSHOP (LPHYS'14), 2015, 594
  • [3] Temperature dependence of quantum dot fluorescence assisted by plasmonic nanoantennas
    Le-Van, Q.
    Le Roux, X.
    Teperik, T. V.
    Habert, B.
    Marquier, F.
    Greffet, J. -J.
    Degiron, A.
    [J]. PHYSICAL REVIEW B, 2015, 91 (08)
  • [4] Fluorescence quenching using plasmonic gold nanoparticles
    Raikar, U. S.
    Tangod, V. B.
    Mastiholi, B. M.
    Fulari, V. J.
    [J]. OPTICS COMMUNICATIONS, 2011, 284 (19) : 4761 - 4765
  • [5] Plasmonic Nickel Nanoantennas
    Chen, Jianing
    Albella, Pablo
    Pirzadeh, Zhaleh
    Alonso-Gonzalez, Pablo
    Huth, Florian
    Bonetti, Stefano
    Bonanni, Valentina
    Akerman, Johan
    Nogues, Josep
    Vavassori, Paolo
    Dmitriev, Alexandre
    Aizpurua, Javier
    Hillenbrand, Rainer
    [J]. SMALL, 2011, 7 (16) : 2341 - 2347
  • [6] Coupled Plasmonic Nanoantennas
    Wang, Hancong
    [J]. INTELLIGENT DATA ANALYSIS AND APPLICATIONS, (ECC 2016), 2017, 535 : 257 - 265
  • [7] Aluminum Plasmonic Nanoantennas
    Knight, Mark W.
    Liu, Lifei
    Wang, Yumin
    Brown, Lisa
    Mukherjee, Shaunak
    King, Nicholas S.
    Everitt, Henry O.
    Nordlander, Peter
    Halas, Naomi J.
    [J]. NANO LETTERS, 2012, 12 (11) : 6000 - 6004
  • [8] Improving Plasmonic Nanoantennas
    Chen, Kuo-Ping
    Drachev, Vladimir P.
    Borneman, Josh
    Kildishev, Alexander V.
    Shalaev, Vladimir M.
    [J]. 2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [9] Quantum plasmonic nanoantennas
    Fitzgerald, Jamie M.
    Azadi, Sam
    Giannini, Vincenzo
    [J]. PHYSICAL REVIEW B, 2017, 95 (23)
  • [10] Fluorescence quenching in plasmonic dimers due to electron tunneling
    Baghramyan, Henrikh M.
    Ciraci, Cristian
    [J]. NANOPHOTONICS, 2022, 11 (11) : 2473 - 2482