Advancing Dynamic Evolutionary Optimization Using In-Memory Database Technology

被引:0
|
作者
Jordan, Julia [1 ,2 ]
Cheng, Wei [3 ]
Scheuermann, Bernd [1 ]
机构
[1] Univ Appl Sci, Hsch Karlsruhe, Karlsruhe, Germany
[2] CAS Software AG, Karlsruhe, Germany
[3] SAP Innovat Ctr Network, Potsdam, Germany
关键词
Dynamic evolutionary algorithm; Associative memory; Prediction; In-memory databases; ASSOCIATIVE MEMORY; ENVIRONMENTS; ALGORITHMS; PREDICTION; SCHEME;
D O I
10.1007/978-3-319-55792-2_11
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper reports on IMDEA (In-Memory database Dynamic Evolutionary Algorithm), an approach to dynamic evolutionary optimization exploiting in-memory database (IMDB) technology to expedite the search process subject to change events arising at runtime. The implemented system benefits from optimization knowledge persisted on an IMDB serving as associative memory to better guide the optimizer through changing environments. For this, specific strategies for knowledge processing, extraction and injection are developed and evaluated. Moreover, prediction methods are embedded and empirical studies outline to which extent these methods are able to anticipate forthcoming dynamic change events by evaluating historical records of previous changes and other optimization knowledge managed by the IMDB.
引用
收藏
页码:156 / 172
页数:17
相关论文
共 50 条
  • [31] Energy-Efficient In-Memory Database Computing
    Lehner, Wolfgang
    DESIGN, AUTOMATION & TEST IN EUROPE, 2013, : 470 - 474
  • [32] Parallel Query on the In-Memory Database in a CUDA Platform
    Huang, Yin-Fu
    Chen, Wei-Cheng
    2015 10TH INTERNATIONAL CONFERENCE ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING (3PGCIC), 2015, : 236 - 243
  • [33] A prefetching indexing scheme for in-memory database systems
    Zhang, Qian
    Song, Haoyun
    Zhou, Kaiyan
    Wei, Jianhao
    Xiao, Chuqiao
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 156 : 179 - 190
  • [34] Enabling CXL Memory Expansion for In-Memory Database Management Systems
    Ahn, Minseon
    Lee, Donghun
    Kim, Jungmin
    Rebholz, Oliver
    Chang, Andrew
    Gim, Jongmin
    Jung, Jaemin
    Pham, Vincent
    Malladi, Krishna T.
    Ki, Yang Seok
    18TH INTERNATIONAL WORKSHOP ON DATA MANAGEMENT ON NEW HARDWARE, DAMON 2022, 2022,
  • [35] A1: A Distributed In-Memory Graph Database
    Buragohain, Chiranjeeb
    Risvik, Knut Magne
    Brett, Paul
    Castro, Miguel
    Cho, Wonhee
    Cowhig, Joshua
    Gloy, Nikolas
    Kalyanaraman, Karthik
    Khanna, Richendra
    Pao, John
    Renzelmann, Matthew
    Shamis, Alex
    Tan, Timothy
    Zheng, Shuheng
    SIGMOD'20: PROCEEDINGS OF THE 2020 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2020, : 329 - 344
  • [36] Efficient Durability Support for Multicore In-Memory Database
    Hao Qian
    PROCEEDINGS OF THE 2015 INTERNATIONAL SYMPOSIUM ON COMPUTERS & INFORMATICS, 2015, 13 : 351 - 358
  • [37] Interactive Transaction Processing for In-Memory Database System
    Zhu, Tao
    Wang, Donghui
    Hu, Huiqi
    Qian, Weining
    Wang, Xiaoling
    Zhou, Aoying
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2018), PT II, 2018, 10828 : 228 - 246
  • [38] Synthesis of Compact Crossbars for in-Memory Computing using Dynamic FBDDs
    Ul Hassen, Amad
    Khokhar, Salman Anwar
    Amin, Bilal
    2018 IEEE 18TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2018,
  • [39] eXtremeDB in-memory embedded database system software
    不详
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2009, 81 (05): : 485 - 486
  • [40] Successful In-Memory Database Usage - A Structured Analysis
    Scheffler, Alexa
    Otyepka, Sarah
    AMCIS 2014 PROCEEDINGS, 2014,