Advancing Dynamic Evolutionary Optimization Using In-Memory Database Technology

被引:0
|
作者
Jordan, Julia [1 ,2 ]
Cheng, Wei [3 ]
Scheuermann, Bernd [1 ]
机构
[1] Univ Appl Sci, Hsch Karlsruhe, Karlsruhe, Germany
[2] CAS Software AG, Karlsruhe, Germany
[3] SAP Innovat Ctr Network, Potsdam, Germany
关键词
Dynamic evolutionary algorithm; Associative memory; Prediction; In-memory databases; ASSOCIATIVE MEMORY; ENVIRONMENTS; ALGORITHMS; PREDICTION; SCHEME;
D O I
10.1007/978-3-319-55792-2_11
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper reports on IMDEA (In-Memory database Dynamic Evolutionary Algorithm), an approach to dynamic evolutionary optimization exploiting in-memory database (IMDB) technology to expedite the search process subject to change events arising at runtime. The implemented system benefits from optimization knowledge persisted on an IMDB serving as associative memory to better guide the optimizer through changing environments. For this, specific strategies for knowledge processing, extraction and injection are developed and evaluated. Moreover, prediction methods are embedded and empirical studies outline to which extent these methods are able to anticipate forthcoming dynamic change events by evaluating historical records of previous changes and other optimization knowledge managed by the IMDB.
引用
收藏
页码:156 / 172
页数:17
相关论文
共 50 条
  • [21] In-memory database acceleration on FPGAs: a survey
    Jian Fang
    Yvo T. B. Mulder
    Jan Hidders
    Jinho Lee
    H. Peter Hofstee
    The VLDB Journal, 2020, 29 : 33 - 59
  • [22] MemTest: A novel benchmark for in-memory database
    Jin, Cheqing (cqjin@sei.ecnu.edu.cn), 1600, Springer Verlag (8807):
  • [23] ScaleDB: A Scalable, Asynchronous In-Memory Database
    Mehdi, Syed Akbar
    Hwang, Deukyeon
    Peter, Simon
    Alvisi, Lorenzo
    PROCEEDINGS OF THE 17TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, OSDI 2023, 2023, : 361 - 376
  • [24] Distributed Architecture of Oracle Database In-memory
    Mukherjee, Niloy
    Chavan, Shasank
    Colgan, Maria
    Das, Dinesh
    Gleeson, Mike
    Hase, Sanket
    Holloway, Allison
    Jin, Hui
    Kamp, Jesse
    Kulkarni, Kartik
    Lahiri, Tirthankar
    Loaiza, Juan
    Macnaughton, Neil
    Marwah, Vineet
    Mullick, Atrayee
    Witkowski, Andy
    Yan, Jiaqi
    Zait, Mohamed
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2015, 8 (12): : 1630 - 1641
  • [25] imGraph: A distributed in-memory graph database
    Jouili, Salim
    Reynaga, Aldemar
    2013 ASE/IEEE INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING (SOCIALCOM), 2013, : 732 - 737
  • [26] In-memory database acceleration on FPGAs: a survey
    Fang, Jian
    Mulder, Yvo T. B.
    Hidders, Jan
    Lee, Jinho
    Hofstee, H. Peter
    VLDB JOURNAL, 2020, 29 (01): : 33 - 59
  • [27] Accelerating In-Memory Database Selections Using Latency Masking Hardware Threads
    Budhkar, Prerna
    Absalyamov, Ildar
    Zois, Vasileios
    Windh, Skyler
    Najjar, Walid A.
    Tsotras, Vassilis J.
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2019, 16 (02)
  • [28] EncDBDB: Searchable Encrypted, Fast, Compressed, In-Memory Database Using Enclaves
    Fuhry, Benny
    Jain, Jayanth H. A.
    Kerschbaum, Florian
    51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN 2021), 2021, : 438 - 450
  • [29] Facing the Genome Data Deluge: Efficiently Identifying Genetic Variants with In-Memory Database Technology
    Faehnrich, Cindy
    Schapranow, Matthieu-P.
    Plattner, Hasso
    30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, VOLS I AND II, 2015, : 18 - 25
  • [30] Accelerating Joins and Aggregations on the Oracle In-Memory Database
    Chavan, Shasank
    Hopeman, Albert
    Lee, Sangho
    Lui, Dennis
    Mylavarapu, Ajit
    Soylemez, Ekrem
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 1441 - 1452