Advancing Dynamic Evolutionary Optimization Using In-Memory Database Technology

被引:0
|
作者
Jordan, Julia [1 ,2 ]
Cheng, Wei [3 ]
Scheuermann, Bernd [1 ]
机构
[1] Univ Appl Sci, Hsch Karlsruhe, Karlsruhe, Germany
[2] CAS Software AG, Karlsruhe, Germany
[3] SAP Innovat Ctr Network, Potsdam, Germany
关键词
Dynamic evolutionary algorithm; Associative memory; Prediction; In-memory databases; ASSOCIATIVE MEMORY; ENVIRONMENTS; ALGORITHMS; PREDICTION; SCHEME;
D O I
10.1007/978-3-319-55792-2_11
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper reports on IMDEA (In-Memory database Dynamic Evolutionary Algorithm), an approach to dynamic evolutionary optimization exploiting in-memory database (IMDB) technology to expedite the search process subject to change events arising at runtime. The implemented system benefits from optimization knowledge persisted on an IMDB serving as associative memory to better guide the optimizer through changing environments. For this, specific strategies for knowledge processing, extraction and injection are developed and evaluated. Moreover, prediction methods are embedded and empirical studies outline to which extent these methods are able to anticipate forthcoming dynamic change events by evaluating historical records of previous changes and other optimization knowledge managed by the IMDB.
引用
收藏
页码:156 / 172
页数:17
相关论文
共 50 条
  • [1] In-Memory Database Optimization Using Statistical Estimation
    Verma, Sudhir
    Bhatnagar, Vidur Shailendra
    2015 IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING IN EMERGING MARKETS (CCEM), 2016, : 177 - 184
  • [2] Dynamic Survival Analysis Using In-Memory Technology
    Schneiderbauer, Sophie
    Schweizer, Diana
    Fey, Theres
    Nasseh, Daniel
    HEALTH INFORMATICS VISION: FROM DATA VIA INFORMATION TO KNOWLEDGE, 2019, 262 : 79 - 82
  • [3] Oracle Database In-Memory: A Dual Format In-Memory Database
    Lahiri, Tirthankar
    Chavan, Shasank
    Colgan, Maria
    Das, Dinesh
    Ganesh, Amit
    Gleeson, Mike
    Hase, Sanket
    Holloway, Allison
    Kamp, Jesse
    Lee, Teck-Hua
    Loaiza, Juan
    Macnaughton, Neil
    Marwah, Vineet
    Mukherjee, Niloy
    Mullick, Atrayee
    Muthulingam, Sujatha
    Raja, Vivekanandhan
    Roth, Marty
    Soylemez, Ekrem
    Zait, Mohamed
    2015 IEEE 31ST INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2015, : 1253 - 1258
  • [4] Hybrid database architectures using the example of the new SAP In-Memory technology
    Färber, Franz
    Jäcksch, Bernhard
    Lemke, Christian
    Große, Philipp
    Lehner, Wolfgang
    Datenbank-Spektrum, 2010, 10 (02) : 81 - 92
  • [5] Using Storage Class Memory Efficiently for an In-memory Database
    Gottesman, Yonatan
    Nider, Joel
    Kat, Ronen
    Weinsberg, Yaron
    Factor, Michael
    PROCEEDINGS OF THE 9TH ACM INTERNATIONAL SYSTEMS AND STORAGE CONFERENCE (SYSTOR'16), 2016,
  • [6] Accelerating Key In-memory Database Functionality with FPGA Technology
    McGlone, John
    Palazzari, Paolo
    Leclere, J. B.
    2018 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG), 2018,
  • [7] Benchmarking in-memory database
    Cheqing Jin
    Yangxin Kong
    Qiangqiang Kang
    Weining Qian
    Aoying Zhou
    Frontiers of Computer Science, 2016, 10 : 1067 - 1081
  • [8] Benchmarking in-memory database
    Cheqing JIN
    Yangxin KONG
    Qiangqiang KANG
    Weining QIAN
    Aoying ZHOU
    Frontiers of Computer Science, 2016, 10 (06) : 1067 - 1081
  • [9] Benchmarking in-memory database
    Jin, Cheqing
    Kong, Yangxin
    Kang, Qiangqiang
    Qian, Weining
    Zhou, Aoying
    FRONTIERS OF COMPUTER SCIENCE, 2016, 10 (06) : 1067 - 1081
  • [10] In-Memory Database Query
    Giannopoulos, Iason
    Singh, Abhairaj
    Le Gallo, Manuel
    Jonnalagadda, Vara Prasad
    Hamdioui, Said
    Sebastian, Abu
    ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (12)