STUDY ON THE BANDGAPS OF TWO-DIMENSIONAL VACUUM/SOLID PHONONIC CRYSTALS WITH HELMHOLTZ RESONATORS

被引:0
|
作者
Ke, Jiao [1 ]
Wang, Yan-feng [1 ]
Wang, Yue-sheng [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Engn Mech, Beijing 100044, Peoples R China
关键词
Helmholtz resonant phononic crystals; finite element method; bandgap; vibration mode;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a type of vacuum/solid phononic crystal composed of two-dimensional Helmholtz resonators, which is called Helmholtz resonant phononic crystals. By using the finite element method, bandgaps and vibration modes are studied. The numerical computation is performed by Comsol Multiphysics 3.5a. The results show that complete resonant bandgaps exist for the Helmholtz resonant phononic crystals, and also a lower full bandgap appears for the mixed mode. The results are related to optimization of the acoustic bandgaps.
引用
收藏
页码:321 / 323
页数:3
相关论文
共 50 条
  • [31] Maximization of Photonic Bandgaps in Two-Dimensional Superconductor Photonic Crystals
    Sahar A. El-Naggar
    Hussein A. Elsayed
    Arafa H. Aly
    [J]. Journal of Superconductivity and Novel Magnetism, 2014, 27 : 1615 - 1621
  • [32] Acoustic invisibility cloak based on two-dimensional solid-fluid phononic crystals
    Ghoreshi, Mahdiyeh
    Bahrami, Ali
    [J]. SOLID STATE COMMUNICATIONS, 2022, 342
  • [33] Surface guided waves in two-dimensional phononic crystals
    Tanaka, Yuklhiro
    Yano, Takafumi
    Tamura, Shin-Ichiro
    [J]. WAVE MOTION, 2007, 44 (06) : 501 - 512
  • [34] Homogenization of two-dimensional phononic crystals at low frequencies
    Ni, Q
    Cheng, JC
    [J]. CHINESE PHYSICS LETTERS, 2005, 22 (09) : 2305 - 2308
  • [35] Boundary element method for band gap calculations of two-dimensional solid phononic crystals
    Li, Feng-Lian
    Wang, Yue-Sheng
    Zhang, Chuanzeng
    Yu, Gui-Lan
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (02) : 225 - 235
  • [36] Effects of material parameters on elastic band gaps of two-dimensional solid phononic crystals
    Zhou, Xiao-Zhou
    Wang, Yue-Sheng
    Zhang, Chuanzeng
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (01)
  • [37] Phase-control in two-dimensional phononic crystals
    Swinteck, N.
    Bringuier, S.
    Robillard, J. -F.
    Vasseur, J. O.
    Hladky-Hennion, A. C.
    Runge, K.
    Deymier, P. A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 110 (07)
  • [38] Acoustic wave degeneracies in two-dimensional phononic crystals
    Darinskii, A. N.
    Le Clezio, E.
    Feuillard, G.
    [J]. WAVE MOTION, 2008, 45 (7-8) : 970 - 980
  • [39] Point defect states in two-dimensional phononic crystals
    Wu, FG
    Hou, ZL
    Liu, ZY
    Liu, YY
    [J]. PHYSICS LETTERS A, 2001, 292 (03) : 198 - 202
  • [40] Topology optimization of two-dimensional asymmetrical phononic crystals
    Dong, Hao-Wen
    Su, Xiao-Xing
    Wang, Yue-Sheng
    Zhang, Chuanzeng
    [J]. PHYSICS LETTERS A, 2014, 378 (04) : 434 - 441