Phase-control in two-dimensional phononic crystals

被引:10
|
作者
Swinteck, N. [1 ]
Bringuier, S. [1 ]
Robillard, J. -F. [2 ]
Vasseur, J. O. [2 ]
Hladky-Hennion, A. C. [2 ]
Runge, K. [1 ]
Deymier, P. A. [1 ]
机构
[1] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA
[2] CNRS, Inst Elect Microelect & Nanotechnol, UMR 8520, F-59652 Villeneuve Dascq, France
基金
美国国家科学基金会;
关键词
TIME-DOMAIN METHOD; ELASTIC BAND-GAPS; WAVE-GUIDE;
D O I
10.1063/1.3641634
中图分类号
O59 [应用物理学];
学科分类号
摘要
A theoretical model is developed to ascertain the necessary band structure and equi-frequency contour (EFC) features of two-dimensional phononic crystals (PCs) for the realization of phase control between propagating acoustic waves. Two different PCs, a square array of cylindrical polyvinylchloride inclusions in air and a triangular array of cylindrical steel inclusions in methanol, offer band structures and EFCs with highly dissimilar features. We demonstrate that PCs with EFCs showing non-collinear wave and group velocity vectors are ideal systems for controlling the phase between propagating acoustic waves. Finite-difference time-domain simulations are employed to validate theoretical models and demonstrate the control of phase between propagating acoustic waves in PC structures. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3641634]
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Zak phase induced interface states in two-dimensional phononic crystals
    Gao, Hui-Fen
    Zhou, Xiao-Fang
    Huang, Xue-Qin
    [J]. Wuli Xuebao/Acta Physica Sinica, 2022, 71 (04):
  • [2] Zak phase induced interface states in two-dimensional phononic crystals
    Gao Hui-Fen
    Zhou Xiao-Fang
    Huang Xue-Qin
    [J]. ACTA PHYSICA SINICA, 2022, 71 (04)
  • [3] Two-dimensional phononic crystals: Examples and applications
    Pennec, Yan
    Vasseur, Jerome O.
    Djafari-Rouhani, Bahram
    Dobrzynski, Leonard
    Deymier, Pierre A.
    [J]. SURFACE SCIENCE REPORTS, 2010, 65 (08) : 229 - 291
  • [4] Two-Dimensional Phononic Crystals: Disorder Matters
    Wagner, Markus R.
    Graczykowski, Bardomiej
    Reparaz, Juan Sebastian
    El Sachat, Alexandros
    Sledzinska, Marianna
    Alzina, Francesc
    Torres, Clivia M. Sotomayor
    [J]. NANO LETTERS, 2016, 16 (09) : 5661 - 5668
  • [5] Bandgap analysis of two-dimensional phononic crystals
    Li, Feng-lian
    [J]. PROCEEDINGS OF THE 2017 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT (ICEESD 2017), 2017, 129 : 105 - 108
  • [6] Phononic band gap width control through structural and material parameters in two-dimensional phononic crystals
    Sliwa, I
    Krawczyk, M
    [J]. ACTA PHYSICA POLONICA A, 2005, 108 (06) : 943 - 957
  • [7] Two-dimensional phononic crystals: surface acoustic waves
    Tanaka, Y
    Tamura, S
    [J]. PHYSICA B, 1999, 263 : 77 - 80
  • [8] Homogenization of two-dimensional phononic crystals at low frequencies
    Ni, Q
    Cheng, JC
    [J]. CHINESE PHYSICS LETTERS, 2005, 22 (09) : 2305 - 2308
  • [9] Surface guided waves in two-dimensional phononic crystals
    Tanaka, Yuklhiro
    Yano, Takafumi
    Tamura, Shin-Ichiro
    [J]. WAVE MOTION, 2007, 44 (06) : 501 - 512
  • [10] Topology optimization of two-dimensional asymmetrical phononic crystals
    Dong, Hao-Wen
    Su, Xiao-Xing
    Wang, Yue-Sheng
    Zhang, Chuanzeng
    [J]. PHYSICS LETTERS A, 2014, 378 (04) : 434 - 441