Ehrhart polynomial roots and stanley's non-negativity theorem

被引:0
|
作者
Braun, Benjamin [1 ]
Develin, Mike [2 ]
机构
[1] Washington Univ, Dept Math, St Louis, MO 63130 USA
[2] Amer Inst Math, Palo Alto, CA 94306 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stanley's non-negativity theorem is at the heart of many of the results in Ehrhart theory. In this paper, we analyze the root behavior of general polynomials satisfying the conditions of Stanley's theorem and compare this to the known root behavior of Ehrhart polynomials. We provide a possible counterexample to a conjecture of the second author, M. Beck, J. De Loera, J. Pfeifle, and R. Stanley, and contribute some experimental data as well.
引用
收藏
页码:67 / +
页数:2
相关论文
共 50 条
  • [1] Weighted Ehrhart theory: Extending Stanley's nonnegativity theorem
    Bajo, Esme
    Davis, Robert
    De Loera, Jesus A.
    Garber, Alexey
    Mora, Sofia Garzon
    Jochemko, Katharina
    Yu, Josephine
    [J]. ADVANCES IN MATHEMATICS, 2024, 444
  • [2] Integral and non-negativity preserving Bernstein-type polynomial approximations
    Ding, J.
    Kolibal, J.
    Rhee, N. H.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (05) : 850 - 859
  • [3] Norm Bounds for Ehrhart Polynomial Roots
    Benjamin Braun
    [J]. Discrete & Computational Geometry, 2008, 39 : 191 - 193
  • [5] Ehrhart polynomial roots of reflexive polytopes
    Hegedus, Gabor
    Higashitani, Akihiro
    Kasprzyk, Alexander
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01):
  • [6] Norm bounds for Ehrhart polynomial roots
    Braun, Benjamin
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (1-3) : 191 - 193
  • [7] NON-NEGATIVITY OF A VARIANCE ESTIMATOR
    PATHAK, PK
    SHUKLA, ND
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1966, 28 (MAR): : 41 - 46
  • [8] A REINFORCED NON-NEGATIVITY CRITERION
    LOEFGREN, T
    [J]. ACTA CRYSTALLOGRAPHICA, 1961, 14 (11): : 1203 - &
  • [9] Stanley's non-Ehrhart-positive order polytopes
    Liu, Fu
    Tsuchiya, Akiyoshi
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2019, 108 : 1 - 10
  • [10] The non-negativity of probabilities and the collapse of state
    Prvanovic, S
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (07) : 815 - 820