Norm bounds for Ehrhart polynomial roots

被引:13
|
作者
Braun, Benjamin [1 ]
机构
[1] Washington Univ, Dept Math, St Louis, MO 63130 USA
关键词
lattice polytopes; polynomial roots; Ehrhart theory;
D O I
10.1007/s00454-008-9049-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
M. Beck et al. found that the roots of the Ehrhart polynomial of a d-dimensional lattice polytope are bounded above in norm by 1+(d+1)!. We provide an improved bound which is quadratic in d and applies to a larger family of polynomials.
引用
收藏
页码:191 / 193
页数:3
相关论文
共 50 条
  • [1] Norm Bounds for Ehrhart Polynomial Roots
    Benjamin Braun
    [J]. Discrete & Computational Geometry, 2008, 39 : 191 - 193
  • [2] Ehrhart polynomial roots of reflexive polytopes
    Hegedus, Gabor
    Higashitani, Akihiro
    Kasprzyk, Alexander
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01):
  • [3] UPPER-BOUNDS OF THE NORM OF THE FACTORS OF A POLYNOMIAL - CASE WHERE ALL THE ROOTS OF THE POLYNOMIAL ARE REAL
    GLESSER, P
    [J]. RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1993, 27 (02): : 121 - 134
  • [4] ON THE BOUNDS FOR THE ROOTS OF A POLYNOMIAL
    XU, DY
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (04) : 336 - 337
  • [5] Bounds on the roots of the Steiner polynomial
    Jetter, Madeleine
    [J]. ADVANCES IN GEOMETRY, 2011, 11 (02) : 313 - 317
  • [6] Bounds for the roots of polynomial equations
    Cohen, Alan M.
    [J]. MATHEMATICAL GAZETTE, 2009, 93 (526): : 87 - +
  • [7] ON THE BOUNDS FOR THE ROOTS OF A POLYNOMIAL.
    Xu, Daoyi
    [J]. IEEE Transactions on Automatic Control, 1987, AC-32 (04): : 336 - 337
  • [8] Ehrhart polynomial roots and stanley's non-negativity theorem
    Braun, Benjamin
    Develin, Mike
    [J]. INTEGER POINTS IN POLYHEDRA - GEOMETRY, NUMBER THEORY, REPRESENTATION THEORY, ALGEBRA, OPTIMIZATION, STATISTICS, 2008, 452 : 67 - +
  • [9] BOUNDS FOR THE MULTIPLICITIES OF THE ROOTS OF A COMPLEX POLYNOMIAL
    Bonciocat, A. I.
    Bonciocat, N. C.
    Zaharescu, A.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 : 587 - 598
  • [10] NEW BOUNDS ON THE REAL POLYNOMIAL ROOTS
    Prodanov, Emil M.
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2022, 75 (02): : 178 - 186