Gated Diode Investigation of Bias Temperature Instability in High-κ FinFETs

被引:13
|
作者
Young, Chadwin D. [1 ]
Neugroschel, Arnost [2 ]
Matthews, Kenneth [3 ]
Smith, Casey [1 ]
Heh, Dawei [1 ]
Park, Hokyung [1 ]
Hussein, Muhammad M. [1 ]
Taylor, William [1 ]
Bersuker, Gennadi [1 ]
机构
[1] SEMATECH, Albany, NY 12203 USA
[2] Univ Florida, Gainesville, FL 32611 USA
[3] SVTC Technol, Austin, TX 78741 USA
关键词
Bias temperature instability (BTI); charge pumping; DCIV; FinFET; hafnium; high-kappa;
D O I
10.1109/LED.2010.2049635
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bias temperature instability (BTI) in FinFET transistors was investigated by charge-pumping (CP) and gated-diode measurements using n(+)/p(-)/p(+) structures with the gate interface identical to that in SOI-FinFETs. The results show greatly improved sensitivity for gated diode measurements than for CP. The pre-stress interface trap density was found to be N-IT congruent to 1011 cm(-2) for SiO2/2 nm-HfSiON/TiN/polySi-capped gate stacks, which is about one decade larger than in planar devices. The kinetics of Delta N-IT(t) under negative bias stress conditions (NBTI) suggests N-IT is generated by Si-H bond breaking. The mechanism for interface trap generation under positive bias stress conditions (PBTI) requires further investigation.
引用
收藏
页码:653 / 655
页数:3
相关论文
共 50 条
  • [31] A model for negative bias temperature instability in oxide and high κ pFETs
    Zatar, Sufi
    2007 IEEE INTERNATIONAL CONFERENCE ON INTEGRATED CIRCUIT DESIGN AND TECHNOLOGY, PROCEEDINGS, 2007, : 105 - +
  • [32] Investigation of Work Function and Temperature of Germanium FinFETs
    Das, R.
    Baishya, S.
    2017 INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2017,
  • [33] Bias temperature instability mechanisms
    Henderson, Christopher L.
    Rose, David W.
    SOLID STATE TECHNOLOGY, 2012, 55 (05) : 21 - 23
  • [34] Effect of Strain on Negative Bias Temperature Instability of Germanium p-Channel Field-Effect Transistor with High-κ Gate Dielectric
    Liu, Bin
    Lim, Phyllis Shi Ya
    Yeo, Yee-Chia
    2010 INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, 2010, : 1055 - 1057
  • [35] Anomalous positive-bias temperature instability of high-κ/metal gate nMOSFET devices with Dy2O3 capping
    O'Connor, Robert
    Chang, Vincent S.
    Pantisano, Luigi
    Ragnarsson, Lars-Ake
    Aoulaiche, Marc
    O'Sullivan, Barry
    Adelmann, Christoph
    Van Elshocht, Sven
    Lehnen, Peer
    Yu, HongYu
    Groeseneken, Guido
    2008 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM PROCEEDINGS - 46TH ANNUAL, 2008, : 671 - +
  • [36] Investigation of cracking in monocrystalline silicon induced by high- temperature indentation
    Zhao, Zerui
    Zhou, Shuilong
    Li, Xianke
    Zhu, Bo
    Guan, Shanyue
    Wang, Shunbo
    Zhao, Hongwei
    ENGINEERING FAILURE ANALYSIS, 2024, 159
  • [37] Kinetic Alfven wave instability driven by electron temperature anisotropy in high-β plasmas
    Chen, L.
    Wu, D. J.
    PHYSICS OF PLASMAS, 2010, 17 (06)
  • [38] Transient Self-Heating Effects on Mixed-Mode Hot Carrier and Bias Temperature Instability in FinFETs: Experiments and Modeling
    Sun, Zixuan
    Luo, Wenpu
    Jiao, Yanxin
    Zhang, Zuodong
    Song, Jiahao
    Zhang, Lining
    Wang, Zirui
    Zhang, Jiayang
    Wang, Runsheng
    Huang, Ru
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (11) : 5528 - 5534
  • [39] Investigation of Negative Bias Temperature Instability Effect in Partially Depleted SOI pMOSFET
    Peng, Chao
    Lei, Zhifeng
    Gao, Rui
    Zhang, Zhangang
    Chen, Yiqiang
    En, Yunfei
    Huang, Yun
    IEEE ACCESS, 2020, 8 : 99037 - 99046
  • [40] Understanding Frequency Dependence of Trap Generation Under AC Negative Bias Temperature Instability Stress in Si p-FinFETs
    Zhou, Longda
    Zhang, Qingzhu
    Yang, Hong
    Ji, Zhigang
    Zhang, Zhaohao
    Liu, Qianqian
    Xu, Hao
    Tang, Bo
    Simoen, Eddy
    Ma, Xueli
    Wang, Xiaolei
    Li, Yongliang
    Yin, Huaxiang
    Luo, Jun
    Zhao, Chao
    Wang, Wenwu
    IEEE ELECTRON DEVICE LETTERS, 2020, 41 (07) : 965 - 968