Improving the Graphical Lasso Estimation for the Precision Matrix Through Roots of the Sample Covariance Matrix

被引:6
|
作者
Avagyan, Vahe [1 ]
Alonso, Andres M. [2 ,3 ]
Nogales, Francisco J. [2 ,4 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281 S9, B-9000 Ghent, Belgium
[2] Univ Carlos III Madrid, Dept Stat, Madrid, Spain
[3] Univ Carlos III Madrid, Inst Flores Lemus, Madrid, Spain
[4] Univ Carlos III Madrid, UC3M BS Inst Financial Big Data, Madrid, Spain
关键词
Gaussian graphical model; Gene expression; High-dimensionality; Penalized estimation; Portfolio selection; SELECTION; OPTIMIZATION; PREDICTION; MODEL;
D O I
10.1080/10618600.2017.1340890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we focus on the estimation of a high-dimensional inverse covariance (i.e., precision) matrix. We propose a simple improvement of the graphical Lasso (glasso) framework that is able to attain better statistical performance without increasing significantly the computational cost. The proposed improvement is based on computing a root of the sample covariance matrix to reduce the spread of the associated eigen values. Through extensive numerical results, using both simulated and real datasets, we show that the proposed modification improves the glasso procedure. Our results reveal that the square-root improvement can be a reasonable choice in practice. Supplementary material for this article is available online.
引用
收藏
页码:865 / 872
页数:8
相关论文
共 50 条
  • [1] Improved Large Dynamic Covariance Matrix Estimation With Graphical Lasso and Its Application in Portfolio Selection
    Yuan, Xin
    Yu, Weiqin
    Yin, Zhixiang
    Wang, Guoqiang
    [J]. IEEE ACCESS, 2020, 8 : 189179 - 189188
  • [2] Robust estimation of sparse precision matrix using adaptive weighted graphical lasso approach
    Tang, Peng
    Jiang, Huijing
    Kim, Heeyoung
    Deng, Xinwei
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2021, 33 (02) : 249 - 272
  • [3] Bayesian precision and covariance matrix estimation for graphical Gaussian models with edge and vertex symmetries
    Massam, H.
    Li, Q.
    Gao, X.
    [J]. BIOMETRIKA, 2018, 105 (02) : 371 - 388
  • [4] Estimation of covariance matrix via the sparse Cholesky factor with lasso
    Chang, Changgee
    Tsay, Ruey S.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3858 - 3873
  • [5] Sparse inverse covariance estimation with the graphical lasso
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Robert
    [J]. BIOSTATISTICS, 2008, 9 (03) : 432 - 441
  • [6] Inertia Estimation Through Covariance Matrix
    Bizzarri, Federico
    del Giudice, Davide
    Grillo, Samuele
    Linaro, Daniele
    Brambilla, Angelo
    Milano, Federico
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (01) : 947 - 956
  • [7] A LASSO Chart for Monitoring the Covariance Matrix
    Maboudou-Tchao, Edgard M.
    Diawara, Norou
    [J]. QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2013, 10 (01): : 95 - 114
  • [8] Estimation of the sample covariance matrix from compressive measurements
    Pourkamali-Anaraki, Farhad
    [J]. IET SIGNAL PROCESSING, 2016, 10 (09) : 1089 - 1095
  • [9] SAMPLE SPACE-TIME COVARIANCE MATRIX ESTIMATION
    Delaosa, Connor
    Pestana, Jennifer
    Goddard, Nicholas J.
    Somasundaram, Samuel
    Weiss, Stephan
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8033 - 8037
  • [10] Chirp parameter estimation from a sample covariance matrix
    Völcker, B
    Ottersten, B
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (03) : 603 - 612