Improving the Graphical Lasso Estimation for the Precision Matrix Through Roots of the Sample Covariance Matrix

被引:6
|
作者
Avagyan, Vahe [1 ]
Alonso, Andres M. [2 ,3 ]
Nogales, Francisco J. [2 ,4 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281 S9, B-9000 Ghent, Belgium
[2] Univ Carlos III Madrid, Dept Stat, Madrid, Spain
[3] Univ Carlos III Madrid, Inst Flores Lemus, Madrid, Spain
[4] Univ Carlos III Madrid, UC3M BS Inst Financial Big Data, Madrid, Spain
关键词
Gaussian graphical model; Gene expression; High-dimensionality; Penalized estimation; Portfolio selection; SELECTION; OPTIMIZATION; PREDICTION; MODEL;
D O I
10.1080/10618600.2017.1340890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we focus on the estimation of a high-dimensional inverse covariance (i.e., precision) matrix. We propose a simple improvement of the graphical Lasso (glasso) framework that is able to attain better statistical performance without increasing significantly the computational cost. The proposed improvement is based on computing a root of the sample covariance matrix to reduce the spread of the associated eigen values. Through extensive numerical results, using both simulated and real datasets, we show that the proposed modification improves the glasso procedure. Our results reveal that the square-root improvement can be a reasonable choice in practice. Supplementary material for this article is available online.
引用
收藏
页码:865 / 872
页数:8
相关论文
共 50 条
  • [21] Sample covariance matrix based parameter estimation for digital synchronization
    Villares, J
    Vázquez, G
    [J]. GLOBECOM'02: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-3, CONFERENCE RECORDS: THE WORLD CONVERGES, 2002, : 463 - 467
  • [22] NONSINGULARITY OF SAMPLE COVARIANCE MATRIX
    DASGUPTA, S
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1971, 33 (DEC): : 475 - 478
  • [23] Radar Covariance Matrix Estimation through Geometric Barycenters
    Aubry, A.
    De Maio, A.
    Pallotta, L.
    Farina, A.
    [J]. 2012 9TH EUROPEAN RADAR CONFERENCE (EURAD), 2012, : 57 - 62
  • [24] ADAPTIVE COVARIANCE MATRIX ESTIMATION THROUGH BLOCK THRESHOLDING
    Cai, Tony
    Yuan, Ming
    [J]. ANNALS OF STATISTICS, 2012, 40 (04): : 2014 - 2042
  • [25] COVARIANCE AND PRECISION MATRIX ESTIMATION FOR HIGH-DIMENSIONAL TIME SERIES
    Chen, Xiaohui
    Xu, Mengyu
    Wu, Wei Biao
    [J]. ANNALS OF STATISTICS, 2013, 41 (06): : 2994 - 3021
  • [26] Unbalanced distributed estimation and inference for the precision matrix in Gaussian graphical models
    Nezakati, Ensiyeh
    Pircalabelu, Eugen
    [J]. STATISTICS AND COMPUTING, 2023, 33 (02)
  • [27] D-trace estimation of a precision matrix using adaptive Lasso penalties
    Vahe Avagyan
    Andrés M. Alonso
    Francisco J. Nogales
    [J]. Advances in Data Analysis and Classification, 2018, 12 : 425 - 447
  • [28] High-dimensional precision matrix estimation with a known graphical structure
    Le, Thien-Minh
    Zhong, Ping-Shou
    [J]. STAT, 2022, 11 (01):
  • [29] Unbalanced distributed estimation and inference for the precision matrix in Gaussian graphical models
    Ensiyeh Nezakati
    Eugen Pircalabelu
    [J]. Statistics and Computing, 2023, 33
  • [30] D-trace estimation of a precision matrix using adaptive Lasso penalties
    Avagyan, Vahe
    Alonso, Andres M.
    Nogales, Francisco J.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2018, 12 (02) : 425 - 447