Fabrication and Study of Large-Area QHE Devices Based on Epitaxial Graphene

被引:19
|
作者
Novikov, Sergei [1 ]
Lebedeva, Natalia [1 ]
Pierz, Klaus [2 ]
Satrapinski, Alexandre [3 ]
机构
[1] Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland
[2] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany
[3] Ctr Metrol & Accreditat, Espoo 02150, Finland
关键词
Contact resistance; epitaxial graphene; graphene fabrication; precision measurement; quantum Hall effect (QHE);
D O I
10.1109/TIM.2014.2385131
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum Hall effect (QHE) devices based on epitaxial graphene films grown on SiC were fabricated and studied for development of the QHE resistance standard. The graphene-metal contacting area in the Hall devices has been improved and fabricated using a double metallization process. The tested devices had an initial carrier concentration of (0.6-10) . 10(11) cm(-2) and showed half-integer QHE at a relatively low (3 T) magnetic field. The application of the photochemical gating method and annealing of the sample provides a convenient way for tuning the carrier density to the optimum value. Precision measurements of the quantum Hall resistance in graphene and GaAs devices at moderate magnetic field strengths (<= 7 T) showed a relative agreement within 6 . 10(-9).
引用
收藏
页码:1533 / 1538
页数:6
相关论文
共 50 条
  • [1] Embedded graphene for large-area silicon-based devices
    Gluba, M. A.
    Amkreutz, D.
    Troppenz, G. V.
    Rappich, J.
    Nickel, N. H.
    APPLIED PHYSICS LETTERS, 2013, 103 (07)
  • [2] A simple process for the fabrication of large-area CVD graphene based devices via selective in situ functionalization and patterning
    Alexeev, Arseny M.
    Barnes, Matthew D.
    Nagareddy, V. Karthik
    Craciun, Monica F.
    Wright, C. David
    2D MATERIALS, 2017, 4 (01):
  • [3] Charge-Carrier Transport in Large-Area Epitaxial Graphene
    Kisslinger, Ferdinand
    Popp, Matthias
    Jobst, Johannes
    Shallcross, Sam
    Weber, Heiko B.
    ANNALEN DER PHYSIK, 2017, 529 (11)
  • [4] Epitaxial growth of large-area bilayer graphene on Ru(0001)
    Que, Yande
    Xiao, Wende
    Fei, Xiangmin
    Chen, Hui
    Huang, Li
    Du, S. X.
    Gao, H. -J.
    APPLIED PHYSICS LETTERS, 2014, 104 (09)
  • [5] Raman Topography and Strain Uniformity of Large-Area Epitaxial Graphene
    Robinson, Joshua A.
    Puls, Conor P.
    Staley, Neal E.
    Stitt, Joseph P.
    Fanton, Mark A.
    Emtsev, Konstantin V.
    Seyller, Thomas
    Liu, Ying
    NANO LETTERS, 2009, 9 (03) : 964 - 968
  • [6] Controllable Fabrication of Large-Area Wrinkled Graphene on a Solution Surface
    Chen, Wenjun
    Gui, Xuchun
    Liang, Binghao
    Liu, Ming
    Lin, Zhiqiang
    Zhu, Yuan
    Tang, Zikang
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (17) : 10977 - 10984
  • [7] Fabrication and Characterization of Large-Area, Semiconducting Nanoperforated Graphene Materials
    Kim, Myungwoong
    Safron, Nathaniel S.
    Han, Eungnak
    Arnold, Michael S.
    Gopalan, Padma
    NANO LETTERS, 2010, 10 (04) : 1125 - 1131
  • [8] Ion sensitivity of large-area epitaxial graphene film on SiC substrate
    Mitsuno, Takanori
    Taniguchi, Yoshiaki
    Ohno, Yasuhide
    Nagase, Masao
    APPLIED PHYSICS LETTERS, 2017, 111 (21)
  • [9] Large-area Uniform Epitaxial Graphene on SiC by Optimizing Temperature Field
    Zhang, Fusheng
    Chen, Xiufang
    Yu, Cancan
    Sun, Li
    Xu, Xiangang
    Hu, Xiaobo
    Li, Tian
    Zhao, Xian
    Zhang, Yong
    Wang, Ruiqi
    2016 13TH CHINA INTERNATIONAL FORUM ON SOLID STATE LIGHTING: INTERNATIONAL FORUM ON WIDE BANDGAP SEMICONDUCTORS CHINA (SSLCHINA: IFWS), 2016, : 54 - 57
  • [10] Large-Area Epitaxial Graphene: Effect of Strain and Thickness on Electronic Properties
    Robinson, Joshua A.
    Fanton, Mark A.
    Stitt, Joseph P.
    Stitt, Thomas
    Snyder, David
    Frantz, Eric
    Tedesco, Joseph L.
    VanMil, Brenda L.
    Jernigan, Glenn
    Campbell, Paul
    Myers-Ward, Rachael L.
    Eddy, Charles R., Jr.
    Gaskill, D. Kurt
    GRAPHENE AND EMERGING MATERIALS FOR POST-CMOS APPLICATIONS, 2009, 19 (05): : 107 - +