Effective quality factor tuning mechanisms in micromechanical resonators

被引:112
|
作者
Miller, James M. Lehto [1 ]
Ansari, Azadeh [2 ]
Heinz, David B. [1 ]
Chen, Yunhan [1 ]
Flader, Ian B. [1 ]
Shin, Dongsuk D. [1 ]
Villanueva, L. Guillermo [3 ]
Kenny, Thomas W. [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30309 USA
[3] Ecole Polytech Fed Lausanne, Adv NEMS Grp, CH-1015 Lausanne, Switzerland
来源
APPLIED PHYSICS REVIEWS | 2018年 / 5卷 / 04期
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
FORCE MICROSCOPE CANTILEVERS; RESOLVED-SIDE-BAND; PARAMETRIC AMPLIFICATION; BACK-ACTION; THERMAL NOISE; ULTRASONIC-ATTENUATION; CAVITY OPTOMECHANICS; MEMS IMPLEMENTATION; FACTOR ENHANCEMENT; SELF-OSCILLATION;
D O I
10.1063/1.5027850
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quality factor (Q) is an important property of micro- and nano-electromechanical (MEM/NEM) resonators that underlie timing references, frequency sources, atomic force microscopes, gyroscopes, and mass sensors. Various methods have been utilized to tune the effective quality factor of MEM/NEM resonators, including external proportional feedback control, optical pumping, mechanical pumping, thermal-piezoresistive pumping, and parametric pumping. This work reviews these mechanisms and compares the effective Q tuning using a position-proportional and a velocity-proportional force expression. We further clarify the relationship between the mechanical Q, the effective Q, and the thermomechanical noise of a resonator. We finally show that parametric pumping and thermal-piezoresistive pumping enhance the effective Q of a micromechanical resonator by experimentally studying the thermomechanical noise spectrum of a device subjected to both techniques. (C) 2018 Author(s).
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Qubit thermometry for micromechanical resonators
    Brunelli, Matteo
    Olivares, Stefano
    Paris, Matteo G. A.
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [42] Energy Dissipation in Micromechanical Resonators
    Ayazi, Farrokh
    Sorenson, Logan
    Tabrizian, Roozbeh
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS III, 2011, 8031
  • [43] Wireless actuation of micromechanical resonators
    Farrukh Mateen
    Carsten Maedler
    Shyamsunder Erramilli
    Pritiraj Mohanty
    Microsystems & Nanoengineering, 2
  • [44] QUALITY FACTOR OPTIMIZATION OF COAXIAL RESONATORS
    ZHU, N
    LANDSTORFER, FM
    ELECTRONICS LETTERS, 1988, 24 (14) : 862 - 863
  • [45] ELECTROSTATIC ACTIVATION OF MICROMECHANICAL RESONATORS
    FATAH, RMA
    ELECTRONICS LETTERS, 1991, 27 (02) : 166 - 168
  • [46] Quality Factor of Dielectric Spherical Resonators
    Zambrana-Puyalto, Xavier
    Raza, Soren
    ACS PHOTONICS, 2024, 11 (08): : 3317 - 3322
  • [47] Process compensated micromechanical resonators
    Ho, Gavin K.
    Perng, John K. C.
    Ayazi, Farrokh
    PROCEEDINGS OF THE IEEE TWENTIETH ANNUAL INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, VOLS 1 AND 2, 2007, : 1 - 4
  • [48] MICROMECHANICAL RESONATORS IN FIBEROPTIC SYSTEMS
    VENKATESH, S
    NOVAK, S
    OPTICS LETTERS, 1987, 12 (02) : 129 - 131
  • [49] Thermoelastic damping in micromechanical resonators
    Metcalf, Thomas H.
    Pate, Bradford B.
    Photiadis, Douglas M.
    Houston, Brian H.
    APPLIED PHYSICS LETTERS, 2009, 95 (06)
  • [50] Tunable Bandpass Filter Design Based on External Quality Factor Tuning and Multiple Mode Resonators for Wideband Applications
    Mao, Jin-Rong
    Choi, Wai-Wa
    Tam, Kam-Weng
    Che, Wen Quan
    Xue, Quan
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (07) : 2574 - 2584