Projective toric codes

被引:3
|
作者
Nardi, Jade [1 ,2 ]
机构
[1] Ecole Polytech, INRIA, CNRS UMR 7161, F-91128 Palaiseau, France
[2] Ecole Polytech, LIX, CNRS UMR 7161, F-91128 Palaiseau, France
关键词
Error-correcting codes; toric variety; polytope; algebraic geometric codes; Grobner bases; ALGEBRAIC FUNCTION-FIELDS; SURFACE CODES; PARAMETERS; SPACES;
D O I
10.1142/S1793042122500142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any integral convex polytope P in R-N provides an N-dimensional toric variety X-P and an ample divisor D-P on this variety. This paper gives an explicit construction of the algebraic geometric error-correcting code on XP, obtained by evaluating global section of the line bundle corresponding to D-P on every rational point of X-P. This work presents an extension of toric codes analogous to the one of Reed-Muller codes into projective ones, by evaluating on the whole variety instead of considering only points with nonzero coordinates. The dimension of the code is given in terms of the number of integral points in the polytope P and an algorithmic technique to get a lower bound on the minimum distance is described.
引用
收藏
页码:179 / 204
页数:26
相关论文
共 50 条
  • [1] On non projective toric manifolds
    Bonavero, L
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2000, 128 (03): : 407 - 431
  • [2] On parameterized toric codes
    Esma Baran
    Mesut Şahin
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2023, 34 : 443 - 467
  • [3] Toric surfaces and codes
    Hansen, JP
    [J]. 1998 INFORMATION THEORY WORKSHOP - KILLARNEY, IRELAND, 1998, : 42 - 43
  • [4] On parameterized toric codes
    Baran, Esma
    Sahin, Mesut
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (03) : 443 - 467
  • [5] Normalized height of a projective toric variety
    Philippon, Patrice
    Sombra, Martin
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2008, 7 (02) : 327 - 373
  • [6] Additive Actions on Toric Projective Hypersurfaces
    Shafarevich, Anton
    [J]. RESULTS IN MATHEMATICS, 2021, 76 (03)
  • [7] The canonical spectrum of projective toric manifolds
    Hajli, Mounir
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (07)
  • [8] Hypergeometric functions for projective toric curves
    Zamaere, Christine Berkesch
    Forsgard, Jens
    Matusevich, Laura Felicia
    [J]. ADVANCES IN MATHEMATICS, 2016, 300 : 835 - 867
  • [9] On the complexity of smooth projective toric varieties
    Hosten, S
    [J]. TOHOKU MATHEMATICAL JOURNAL, 1998, 50 (03) : 325 - 332
  • [10] ON THE CLASSIFICATION OF SMOOTH PROJECTIVE TORIC VARIETIES
    BATYREV, VV
    [J]. TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (04) : 569 - 585