On parameterized toric codes

被引:0
|
作者
Esma Baran
Mesut Şahin
机构
[1] Çankırı Karatekin University,Department of Mathematics
[2] Hacettepe University,Institute of Science
[3] Hacettepe University,Department of Mathematics
关键词
Evaluation code; Toric variety; Multigraded Hilbert function; Vanishing ideal; Parameterized code; Lattice ideal; Primary 14M25; 14G50; Secondary 52B20;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a complete simplicial toric variety over a finite field with a split torus TX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{X}$$\end{document}. For any matrix Q, we are interested in the subgroup YQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{Q}$$\end{document} of TX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{X}$$\end{document} parameterized by the columns of Q. We give an algorithm for obtaining a basis for the unique lattice L whose lattice ideal IL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{L}$$\end{document} is I(YQ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(Y_{Q})$$\end{document}. We also give two direct algorithmic methods to compute the order of YQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{Q}$$\end{document}, which is the length of the corresponding code Cα,YQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {C}}}_{\mathbf{\alpha },Y_Q}$$\end{document}. We share procedures implementing them in Macaulay2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\texttt {Macaulay2}}$$\end{document}. Finally, we give a lower bound for the minimum distance of Cα,YQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {C}}}_{\mathbf{\alpha },Y_Q}$$\end{document}, taking advantage of the parametric description of the subgroup YQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_Q$$\end{document}. As an application, we compute the main parameters of the toric codes on Hirzebruch surfaces Hℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{\ell }$$\end{document} generalizing the corresponding result given by Hansen.
引用
收藏
页码:443 / 467
页数:24
相关论文
共 50 条
  • [1] On parameterized toric codes
    Baran, Esma
    Sahin, Mesut
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (03) : 443 - 467
  • [2] Toric surfaces and codes
    Hansen, JP
    [J]. 1998 INFORMATION THEORY WORKSHOP - KILLARNEY, IRELAND, 1998, : 42 - 43
  • [3] Projective toric codes
    Nardi, Jade
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (01) : 179 - 204
  • [4] PARAMETERIZED AFFINE CODES
    Lopez, Hiram H.
    Sarmiento, Eliseo
    Pinto, Maria Vaz
    Villarreal, Rafael H.
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2012, 49 (03) : 406 - 418
  • [5] Vanishing ideals of parameterized subgroups in a toric variety
    Baran Ozkan, Esma
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (06) : 2141 - 2150
  • [6] Toric residue codes: I
    Joshua, Roy
    Akhtar, Reza
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (01) : 15 - 50
  • [7] The Order Bound for Toric Codes
    Beelen, Peter
    Ruano, Diego
    [J]. APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES, 2009, 5527 : 1 - 10
  • [8] On the structure of generalized toric codes
    Ruano, Diego
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (05) : 499 - 506
  • [9] Toric codes and finite geometries
    Little, John B.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 : 203 - 216
  • [10] Remarks on generalized toric codes
    Little, John B.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 : 1 - 14