Identification of Errors-in-Variables Systems with General Nonlinear Output Observations and with ARMA Observation Noises

被引:4
|
作者
Song, Qijiang [1 ]
Huang, Zhiyong [1 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
ARMA noise; alpha-mixing; binary sensor; errors-in-variables; nonlinear observation; recursive estimate; stochastic approximation (SA); strongly consistent; system identification; RECURSIVE-IDENTIFICATION; WIENER;
D O I
10.1007/s11424-020-9009-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the identification problem of scalar errors-in-variables (EIV) systems with general nonlinear output observations and ARMA observation noises. Under independent and identically distributed (i.i.d.) Gaussian inputs with unknown variance, recursive algorithms for estimating the parameters of the EIV systems are presented. For general nonlinear observations, conditions on the system are imposed to guarantee the almost sure convergence of the estimates. A simulation example is included to justify the theoretical results.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [11] An identification approach to dynamic errors-in-variables systems with a preliminary clustering of observations
    Hunyadi, Levente
    Vajk, István
    [J]. Periodica Polytechnica Electrical Engineering, 2008, 52 (3-4): : 127 - 135
  • [12] Robust Global Identification of LPV Errors-in-Variables Systems With Incomplete Observations
    Liu, Xin
    Han, Guangjie
    Yang, Xianqiang
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (06): : 3799 - 3807
  • [13] Identification of Wiener Systems with Process Noise is a Nonlinear Errors-in-Variables Problem
    Wahlberg, Bo
    Welsh, James
    Ljung, Lennart
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3328 - 3333
  • [14] Robust identification for nonlinear errors-in-variables systems using the EM algorithm
    Guo, F.
    Hariprasad, K.
    Huang, B.
    Ding, Y. S.
    [J]. JOURNAL OF PROCESS CONTROL, 2017, 54 : 129 - 137
  • [15] Identification of errors-in-variables models with colored output noise
    Diversi, Roberto
    Soverini, Umberto
    [J]. 2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 1784 - 1789
  • [16] ARMA model identification from noisy observations based on a two-step errors-in-variables approach
    Diversi, Roberto
    Grivel, Eric
    Merchan, Fernando
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 14143 - 14149
  • [17] The Asymptotic Method for the Identification of Errors-in-Variables Systems
    Liu Xin
    Zhu Yucai
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 1952 - 1957
  • [18] Recursive identification of errors-in-variables Wiener systems
    Mu, Bi-Qiang
    Chen, Han-Fu
    [J]. AUTOMATICA, 2013, 49 (09) : 2744 - 2753
  • [19] Recursive identification for multivariate errors-in-variables systems
    Chen, Han-Fu
    [J]. AUTOMATICA, 2007, 43 (07) : 1234 - 1242
  • [20] Identification of errors-in-variables systems: An asymptotic approach
    Liu, Xin
    Zhu, Yucai
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (08) : 1126 - 1138