Identification of errors-in-variables systems: An asymptotic approach

被引:4
|
作者
Liu, Xin [1 ]
Zhu, Yucai [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
ARX model; asymptotic method; Box-Jenkins model; errors-in-variables mod; input noise variance; BLACK-BOX IDENTIFICATION; MODELS; DESIGN; INPUT; NOISE;
D O I
10.1002/acs.2751
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work studies the identification of errors-in-variables (EIV) systems. An asymptotic method (ASYM) is developed for the EIV system, Firstly, an auto regressive with exogeneous (ARX) model estimation method is proposed, which is consistent for EIV systems. Then the asymptotic variance expression of the estimated high-order ARX model is derived, which forms the basis of the ASYM method. In parameter estimation, the ASYM starts with a high-order ARX model estimation followed by a frequency domain weighted model reduction. The obtained model is consistent, and its efficiency needs to be investigated. Besides parameter estimation, a criterion for model order selection is proposed, which is based on frequency domain considerations, and the frequency domain error bound is established that can be used for model validation. Simulations and comparisons with other methods are used to illustrate the performance of the method.
引用
收藏
页码:1126 / 1138
页数:13
相关论文
共 50 条
  • [1] The Asymptotic Method for the Identification of Errors-in-Variables Systems
    Liu Xin
    Zhu Yucai
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 1952 - 1957
  • [2] Recursive identification of errors-in-variables systems
    Chen, Han-Fu
    [J]. 2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 1576 - 1580
  • [3] Recursive identification for multivariate errors-in-variables systems
    Chen, Han-Fu
    [J]. AUTOMATICA, 2007, 43 (07) : 1234 - 1242
  • [4] Recursive identification of errors-in-variables Wiener systems
    Mu, Bi-Qiang
    Chen, Han-Fu
    [J]. AUTOMATICA, 2013, 49 (09) : 2744 - 2753
  • [5] Non-Asymptotic Confidence Regions for Errors-In-Variables Systems
    Khorasani, Masoud Moravej
    Weyer, Erik
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 1020 - 1025
  • [6] Consistent Subspace Identification of Errors-in-Variables Hammerstein Systems
    Hou, Jie
    Su, Hao
    Yu, Chengpu
    Chen, Fengwei
    Li, Penghua
    Xie, Haofei
    Li, Taifu
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (04): : 2292 - 2303
  • [7] Nonparametric identification of linear dynamic errors-in-variables systems
    Zhang, Erliang
    Pintelon, Rik
    [J]. AUTOMATICA, 2018, 94 : 416 - 425
  • [8] Errors-in-variables identification of dynamic systems in general cases
    Zhang, E.
    Pintelon, R.
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 309 - 313
  • [9] Identification of Errors-In-Variables Systems with Nonlinear Output Measurements
    Song, Qijiang
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1820 - 1825
  • [10] Identification of errors-in-variables systems with nonlinear output observations
    Song, Qijiang
    [J]. AUTOMATICA, 2013, 49 (04) : 987 - 992