Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4

被引:7
|
作者
Kotelnikov, Sergei [1 ,2 ,3 ]
Alekseenko, Andrey [1 ,2 ]
Liu, Cong [1 ,4 ]
Ignatov, Mikhail [1 ,2 ,5 ]
Padhorny, Dzmitry [1 ,2 ]
Brini, Emiliano [1 ]
Lukin, Mark [6 ]
Coutsias, Evangelos [1 ,2 ]
Dill, Ken A. [1 ,4 ,7 ]
Kozakov, Dima [1 ,2 ,5 ]
机构
[1] SUNY Stony Brook, Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[3] Innopolis Univ, Innopolis, Russia
[4] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[5] SUNY Stony Brook, Inst Adv Computat Sci, Stony Brook, NY 11794 USA
[6] SUNY Stony Brook, Dept Pharmacol Sci, Stony Brook, NY 11794 USA
[7] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D3R; Protein-ligand docking; Template-based docking; Macrocycles; BACE-1; PROTEIN DOCKING; SIDE-CHAIN; PERFORMANCE; PREDICTION; MINIMIZATION; PARAMETERS; ACCURACY;
D O I
10.1007/s10822-019-00257-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe a new template-based method for docking flexible ligands such as macrocycles to proteins. It combines Monte-Carlo energy minimization on the manifold, a fast manifold search method, with BRIKARD for complex flexible ligand searching, and with the MELD accelerator of Replica-Exchange Molecular Dynamics simulations for atomistic degrees of freedom. Here we test the method in the Drug Design Data Resource blind Grand Challenge competition. This method was among the best performers in the competition, giving sub-angstrom prediction quality for the majority of the targets.
引用
收藏
页码:179 / 189
页数:11
相关论文
共 50 条
  • [21] Affinity prediction using deep learning based on SMILES input for D3R grand challenge 4
    Sangrak Lim
    Yong Oh Lee
    Juyong Yoon
    Young Jun Kim
    [J]. Journal of Computer-Aided Molecular Design, 2022, 36 : 225 - 235
  • [22] Affinity prediction using deep learning based on SMILES input for D3R grand challenge 4
    Lim, Sangrak
    Lee, Yong Oh
    Yoon, Juyong
    Kim, Young Jun
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2022, 36 (03) : 225 - 235
  • [23] Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015
    Inna Slynko
    Franck Da Silva
    Guillaume Bret
    Didier Rognan
    [J]. Journal of Computer-Aided Molecular Design, 2016, 30 : 669 - 683
  • [24] Hybrid receptor structure/ligand-based docking and activity prediction in ICM: development and evaluation in D3R Grand Challenge 3
    Polo C.-H. Lam
    Ruben Abagyan
    Maxim Totrov
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 35 - 46
  • [25] Hybrid receptor structure/ligand-based docking and activity prediction in ICM: development and evaluation in D3R Grand Challenge 3
    Lam, Polo C. -H.
    Abagyan, Ruben
    Totrov, Maxim
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 35 - 46
  • [26] Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets
    Selwa, Edithe
    Martiny, Virginie Y.
    Iorga, Bogdan I.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 829 - 839
  • [27] Blinded prediction of protein–ligand binding affinity using Amber thermodynamic integration for the 2018 D3R grand challenge 4
    Junjie Zou
    Chuan Tian
    Carlos Simmerling
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 1021 - 1029
  • [28] CDOCKER and λ-dynamics for prospective prediction in D3R Grand Challenge 2
    Ding, Xinqiang
    Hayes, Ryan L.
    Vilseck, Jonah Z.
    Charles, Murchtricia K.
    Brooks, Charles L., III
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2018, 32 (01) : 89 - 102
  • [29] Deep neural network affinity model for BACE inhibitors in D3R Grand Challenge 4
    Wang, Bo
    Ng, Ho-Leung
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (02) : 201 - 217
  • [30] Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets
    Edithe Selwa
    Virginie Y. Martiny
    Bogdan I. Iorga
    [J]. Journal of Computer-Aided Molecular Design, 2016, 30 : 829 - 839