Hybrid receptor structure/ligand-based docking and activity prediction in ICM: development and evaluation in D3R Grand Challenge 3

被引:12
|
作者
Lam, Polo C. -H. [1 ]
Abagyan, Ruben [2 ]
Totrov, Maxim [1 ]
机构
[1] Molsoft LLC, 11199 Sorrento Valley Rd,S209, San Diego, CA 92121 USA
[2] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA
关键词
D3R; D3R GC3; ICM; APF; 3D QSAR; Docking; Computer-aided drug design; DRUG DESIGN; LIGAND; STRATEGIES;
D O I
10.1007/s10822-018-0139-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In context of D3R Grand Challenge 3 we have investigated several ligand activity prediction protocols that combined elements of a physics-based energy function (ICM VLS score) and the knowledge-based Atomic Property Field 3D QSAR approach. Activity prediction models utilized poses produced by ICM-Dock with ligand bias and 4D receptor conformational ensembles (LigBEnD). Hybrid APF/P (APF/Physics) models were superior to pure physics- or knowledge-based models in our preliminary tests using rigorous three-fold clustered cross-validation and later proved successful in the blind prediction for D3R GC3 sets, consistently performing well across four different targets. The results demonstrate that knowledge-based and physics-based inputs into the machine-learning activity model can be non-redundant and synergistic.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 50 条
  • [1] Hybrid receptor structure/ligand-based docking and activity prediction in ICM: development and evaluation in D3R Grand Challenge 3
    Polo C.-H. Lam
    Ruben Abagyan
    Maxim Totrov
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 35 - 46
  • [2] Macrocycle modeling in ICM: benchmarking and evaluation in D3R Grand Challenge 4
    Polo C.-H. Lam
    Ruben Abagyan
    Maxim Totrov
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 1057 - 1069
  • [3] Macrocycle modeling in ICM: benchmarking and evaluation in D3R Grand Challenge 4
    Lam, Polo C-H
    Abagyan, Ruben
    Totrov, Maxim
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) : 1057 - 1069
  • [4] Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015
    Xianjin Xu
    Chengfei Yan
    Xiaoqin Zou
    [J]. Journal of Computer-Aided Molecular Design, 2017, 31 : 689 - 699
  • [5] Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015
    Xu, Xianjin
    Yan, Chengfei
    Zou, Xiaoqin
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2017, 31 (08) : 689 - 699
  • [6] D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings
    Zied Gaieb
    Conor D. Parks
    Michael Chiu
    Huanwang Yang
    Chenghua Shao
    W. Patrick Walters
    Millard H. Lambert
    Neysa Nevins
    Scott D. Bembenek
    Michael K. Ameriks
    Tara Mirzadegan
    Stephen K. Burley
    Rommie E. Amaro
    Michael K. Gilson
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 1 - 18
  • [7] Protein–ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Panagiotis I. Koukos
    Li C. Xue
    Alexandre M. J. J. Bonvin
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 83 - 91
  • [8] Benchmarking ensemble docking methods in D3R Grand Challenge 4
    Jessie Low Gan
    Dhruv Kumar
    Cynthia Chen
    Bryn C. Taylor
    Benjamin R. Jagger
    Rommie E. Amaro
    Christopher T. Lee
    [J]. Journal of Computer-Aided Molecular Design, 2022, 36 : 87 - 99
  • [9] Benchmarking ensemble docking methods in D3R Grand Challenge 4
    Gan, Jessie Low
    Kumar, Dhruv
    Chen, Cynthia
    Taylor, Bryn C.
    Jagger, Benjamin R.
    Amaro, Rommie E.
    Lee, Christopher T.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2022, 36 (02) : 87 - 99
  • [10] Protein-ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Koukos, Panagiotis I.
    Xue, Li C.
    Bonvin, Alexandre M. J. J.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 83 - 91