Applying the unscented Kalman filter for nonlinear state estimation

被引:365
|
作者
Kandepu, Rambabu [1 ]
Foss, Bjarne [1 ]
Imsland, Lars [2 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Engn Cybernet, N-7491 Trondheim, Norway
[2] SINTEF ICT, N-7465 Trondheim, Norway
关键词
nonlinear state estimation; Kalman filter; constraint handling;
D O I
10.1016/j.jprocont.2007.11.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on presentation of the principles of the EKF and UKF for state estimation, we discuss the differences of the two approaches. Four rather different simulation cases are considered to compare the performance. A simple procedure to include state constraints in the UKF is proposed and tested. The overall impression is that the performance of the UKF is better than the EKF in terms of robustness. and speed of convergence. The computational load in applying the UKF is comparable to the EKF. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:753 / 768
页数:16
相关论文
共 50 条
  • [21] Applications of square root Unscented Kalman Filter on the state estimation
    Peng Yun-hui
    Miao Dong
    Liu Yun-feng
    Proceedings of 2006 Chinese Control and Decision Conference, 2006, : 53 - 56
  • [22] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Loïc J. Azzalini
    David Crompton
    Gabriele M. T. D’Eleuterio
    Frances Skinner
    Milad Lankarany
    Journal of Computational Neuroscience, 2023, 51 : 223 - 237
  • [23] State estimation of induction motor using unscented Kalman filter
    Akin, B
    Orguner, U
    Ersak, A
    CCA 2003: PROCEEDINGS OF 2003 IEEE CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 2003, : 915 - 919
  • [24] An Enhanced Adaptive Unscented Kalman Filter for Vehicle State Estimation
    Zhang, Yingjie
    Li, Ming
    Zhang, Ying
    Hu, Zuolei
    Sun, Qingshuai
    Lu, Biliang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [25] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Azzalini, Loic J.
    Crompton, David
    D'Eleuterio, Gabriele M. T.
    Skinner, Frances
    Lankarany, Milad
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2023, 51 (02) : 223 - 237
  • [26] Unscented Kalman filter for power system dynamic state estimation
    Valverde, G.
    Terzija, V.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2011, 5 (01) : 29 - 37
  • [27] AN IMPROVED DUAL UNSCENTED KALMAN FILTER FOR STATE AND PARAMETER ESTIMATION
    Yu, Anxi
    Liu, Ye
    Zhu, Jubo
    Dong, Zhen
    ASIAN JOURNAL OF CONTROL, 2016, 18 (04) : 1427 - 1440
  • [28] A Comparison between State of Charge Estimation Methods: Extended Kalman Filter and Unscented Kalman Filter
    Ilies, Adelina Ioana
    Chindris, Gabriel
    Pitica, Dan
    2020 IEEE 26TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME 2020), 2020, : 376 - 381
  • [29] Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects
    Fang Deng
    Jie Chen
    Chen Chen
    Journal of Systems Engineering and Electronics, 2013, 24 (04) : 655 - 665
  • [30] Modified strong tracking unscented Kalman filter for nonlinear state estimation with process model uncertainty
    Hu, Gaoge
    Gao, Shesheng
    Zhong, Yongmin
    Gao, Bingbing
    Subic, Aleksandar
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2015, 29 (12) : 1561 - 1577