Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects

被引:0
|
作者
Fang Deng [1 ,2 ]
Jie Chen [1 ,2 ]
Chen Chen [1 ,2 ]
机构
[1] School of Automation, Beijing Institute of Technology
[2] Key Laboratory of Intelligent Control and Decision of Complex Systems
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
parameter estimation; state estimation; unscented Kalman filter (UKF); strong tracking filter; wavelet transform;
D O I
暂无
中图分类号
TN713 [滤波技术、滤波器];
学科分类号
080902 ;
摘要
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.
引用
收藏
页码:655 / 665
页数:11
相关论文
共 50 条
  • [1] Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects
    Deng, Fang
    Chen, Jie
    Chen, Chen
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2013, 24 (04) : 655 - 665
  • [2] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Loïc J. Azzalini
    David Crompton
    Gabriele M. T. D’Eleuterio
    Frances Skinner
    Milad Lankarany
    [J]. Journal of Computational Neuroscience, 2023, 51 : 223 - 237
  • [3] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Azzalini, Loic J.
    Crompton, David
    D'Eleuterio, Gabriele M. T.
    Skinner, Frances
    Lankarany, Milad
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2023, 51 (02) : 223 - 237
  • [4] Adaptive Unscented Kalman Filter for Online State, Parameter, and Process Covariance Estimation
    Riva, Mauro Hernan
    Dagen, Matthias
    Ortmaier, Tobias
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 4513 - 4519
  • [5] State Parameter Estimation of Intelligent Vehicles Based on an Adaptive Unscented Kalman Filter
    Wang, Yu
    Li, Yushan
    Zhao, Ziliang
    [J]. ELECTRONICS, 2023, 12 (06)
  • [6] A novel adaptive unscented Kalman filter for nonlinear estimation
    Jiang, Zhe
    Song, Qi
    He, Yuqing
    Han, Jianda
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 5805 - +
  • [7] State Estimation of Nonlinear Systems Using Novel Adaptive Unscented Kalman Filter
    Jargani, Lotfollah
    Shahbazian, Mehdi
    Salahshoor, Karim
    Fathabadi, Vahid
    [J]. ICET: 2009 INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2009, : 124 - 129
  • [8] Applying the unscented Kalman filter for nonlinear state estimation
    Kandepu, Rambabu
    Foss, Bjarne
    Imsland, Lars
    [J]. JOURNAL OF PROCESS CONTROL, 2008, 18 (7-8) : 753 - 768
  • [9] Aerodynamic parameter estimation using adaptive unscented Kalman filter
    Majeed, M.
    Kar, Indra Narayan
    [J]. AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2013, 85 (04): : 267 - 279
  • [10] AN IMPROVED DUAL UNSCENTED KALMAN FILTER FOR STATE AND PARAMETER ESTIMATION
    Yu, Anxi
    Liu, Ye
    Zhu, Jubo
    Dong, Zhen
    [J]. ASIAN JOURNAL OF CONTROL, 2016, 18 (04) : 1427 - 1440