Optimal fault detection with nuisance parameters and a general covariance matrix

被引:8
|
作者
Fouladirad, M. [1 ]
Freitag, L. [1 ]
Nikiforov, I. [1 ]
机构
[1] Univ Technol Troyes, ICD, CNRS, FRE 2848, F-10010 Troyes, France
关键词
statistical hypotheses testing; invariance; parity space; linear systems; GNSS navigation;
D O I
10.1002/acs.976
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimal fault detection is addressed within a statistical framework. A linear model with nuisance parameters and a general covariance matrix (not necessarily diagonal) is considered. It is supposed that the nuisance parameters are unknown but non-random; practically, this means that the nuisance can be intentionally chosen to maximize its negative impact on the monitored system (for instance, to mask a fault). Two different invariant tests can be designed in such a case. It is shown that these methods are equivalent. An example of the ground-based Global Navigation Satellite System (GNSS) integrity monitoring in the case of an arbitrary diagonal covariance matrix of the pseudorange errors illustrates the relevance of the proposed approaches. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:431 / 439
页数:9
相关论文
共 50 条
  • [31] Minimax optimal estimation of general bandable covariance matrices
    Xue, Lingzhou
    Zou, Hui
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 : 45 - 51
  • [32] Optimal designs under a multivariate linear model with additional nuisance parameters
    Filipiak, Katarzyna
    Markiewicz, Augustyn
    Szczepanska, Anna
    STATISTICAL PAPERS, 2009, 50 (04) : 761 - 778
  • [33] Data detection in the presence of nuisance parameters using quantization theory
    Nassar, CR
    Soleymani, MR
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 370 - 370
  • [34] Optimal designs under a multivariate linear model with additional nuisance parameters
    Katarzyna Filipiak
    Augustyn Markiewicz
    Anna Szczepańska
    Statistical Papers, 2009, 50 : 761 - 778
  • [35] Effective independence in optimal sensor placement associated with general Fisher information involving full error covariance matrix
    Kim, Seon-Hu
    Cho, Chunhee
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 212
  • [36] Covariance Model with General Linear Structure and Divergent Parameters
    Fan, Xinyan
    Lan, Wei
    Zou, Tao
    Tsai, Chih-Ling
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (01) : 36 - 48
  • [37] Anomaly Detection with Bounded Nuisance Parameters and Safe Train Navigation
    Harrou, Fouzi
    Fillatre, Lionel
    Nikiforov, Igor
    2008 10TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION: ICARV 2008, VOLS 1-4, 2008, : 1021 - 1026
  • [38] Application of quantization theory to data detection in the presence of nuisance parameters
    Nassar, CR
    Soleymani, MR
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1999, 47 (06) : 804 - 808
  • [39] Error exponents for target-class detection with nuisance parameters
    Misra, Saswat
    Tong, Lang
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 845 - +
  • [40] Tests for detection of outliers based on robust estimators of nuisance parameters
    Pagurova, VI
    Chizhikova, IL
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1996, 40 (02) : 390 - 397