Smoothness and long time existence for solutions of the Cahn-Hilliard equation on manifolds with conical singularities

被引:2
|
作者
Lopes, Pedro T. P. [1 ]
Roidos, Nikolaos [2 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Patras, Dept Math, Rion 26504, Greece
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 197卷 / 04期
基金
巴西圣保罗研究基金会;
关键词
Semilinear parabolic equations; Maximal regularity; Cahn-Hilliard equation; Manifolds with conical singularities; CONE DIFFERENTIAL-OPERATORS; BOUNDED IMAGINARY POWERS; POROUS-MEDIUM EQUATION; COMPLEX POWERS; SPACES;
D O I
10.1007/s00605-022-01674-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cahn-Hilliard equation on manifolds with conical singularities. For appropriate initial data we show that the solution exists in the maximal L-q-regularity space for all times and becomes instantaneously smooth in space and time, where the maximal L-q-regularity is obtained in the sense of Mellin-Sobolev spaces. Moreover, we provide precise information concerning the asymptotic behavior of the solution close to the conical tips in terms of the local geometry.
引用
收藏
页码:677 / 716
页数:40
相关论文
共 50 条
  • [31] THE EXISTENCE OF GLOBAL ATTRACTOR FOR CONVECTIVE CAHN-HILLIARD EQUATION
    Zhao, Xiaopeng
    Liu, Bo
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (02) : 357 - 378
  • [32] A NOTE ON LARGE TIME BEHAVIOUR OF SOLUTIONS FOR VISCOUS CAHN-HILLIARD EQUATION
    Liu Changchun
    Zhou Juan
    Yin Jingxue
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (05) : 1216 - 1224
  • [33] A NOTE ON LARGE TIME BEHAVIOUR OF SOLUTIONS FOR VISCOUS CAHN-HILLIARD EQUATION
    刘长春
    周娟
    尹景学
    ActaMathematicaScientia, 2009, 29 (05) : 1216 - 1224
  • [34] Existence of solutions to a Cahn-Hilliard system with two mobilities
    Cherfils, Laurence
    Miranville, Alain
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (01)
  • [35] LONG-TIME BEHAVIOR OF A NONLOCAL CAHN-HILLIARD EQUATION WITH REACTION
    Iuorio, Annalisa
    Melchionna, Stefano
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) : 3765 - 3788
  • [36] An L∞ bound for solutions of a fractional Cahn-Hilliard equation
    Ye, Hailong
    Liu, Qiang
    Zhou, Mingjun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (12) : 3353 - 3365
  • [37] Classical solutions for the Cahn-Hilliard equation with decayed mobility
    Rui Huang
    Ming Mei
    Jingxue Yin
    Boundary Value Problems, 2014
  • [38] Stationary Solutions of Quadratic Cahn-Hilliard Equation and Their Stability
    Frolovskaya, O. A.
    Pukhnachev, V. V.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2013, 1561 : 47 - 52
  • [39] The convective viscous Cahn-Hilliard equation: Exact solutions
    Mchedlov-Petrosyan, P. O.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2016, 27 (01) : 42 - 65
  • [40] Finite difference approximate solutions for the Cahn-Hilliard equation
    Khiari, N.
    Achouri, T.
    Ben Mohamed, M. L.
    Omrani, K.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (02) : 437 - 455