Smoothness and long time existence for solutions of the Cahn-Hilliard equation on manifolds with conical singularities

被引:2
|
作者
Lopes, Pedro T. P. [1 ]
Roidos, Nikolaos [2 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Patras, Dept Math, Rion 26504, Greece
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 197卷 / 04期
基金
巴西圣保罗研究基金会;
关键词
Semilinear parabolic equations; Maximal regularity; Cahn-Hilliard equation; Manifolds with conical singularities; CONE DIFFERENTIAL-OPERATORS; BOUNDED IMAGINARY POWERS; POROUS-MEDIUM EQUATION; COMPLEX POWERS; SPACES;
D O I
10.1007/s00605-022-01674-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cahn-Hilliard equation on manifolds with conical singularities. For appropriate initial data we show that the solution exists in the maximal L-q-regularity space for all times and becomes instantaneously smooth in space and time, where the maximal L-q-regularity is obtained in the sense of Mellin-Sobolev spaces. Moreover, we provide precise information concerning the asymptotic behavior of the solution close to the conical tips in terms of the local geometry.
引用
收藏
页码:677 / 716
页数:40
相关论文
共 50 条
  • [21] ROTATIONALLY SYMMETRIC SOLUTIONS TO THE CAHN-HILLIARD EQUATION
    Hernandez, Alvaro
    Kowalczyk, Michal
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (02) : 801 - 827
  • [22] Periodic solutions for a Cahn-Hilliard type equation
    Yin, Li
    Li, Yinghua
    Huang, Rui
    Yin, Jingxue
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (1-2) : 11 - 18
  • [23] Periodic solutions to the Cahn-Hilliard equation with constraint
    Wang, Yifu
    Zheng, Jiashan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (04) : 649 - 660
  • [24] On the stationary Cahn-Hilliard equation: Bubble solutions
    Wei, JC
    Winter, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) : 1492 - 1518
  • [25] On the degenerate Cahn-Hilliard equation: Global existence and entropy estimates of weak solutions
    Wu Jihui
    Wang Shu
    ASYMPTOTIC ANALYSIS, 2020, 119 (1-2) : 1 - 38
  • [26] Existence of Compressible Bilayers in the Functionalized Cahn-Hilliard Equation
    Promislow, K.
    Yang, L.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2014, 13 (02): : 629 - 657
  • [27] ON THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    ZHENG, SM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 96 (04) : 339 - 357
  • [28] THE EXISTENCE OF GLOBAL ATTRACTOR FOR A CAHN-HILLIARD/ALLEN-CAHN EQUATION
    Tang, H.
    Liu, C.
    Zhao, Z.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (03): : 643 - 658
  • [29] GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO CAHN-HILLIARD EQUATION WITH INERTIAL TERM
    Wang, Yin-Xia
    Wei, Zhiqiang
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (09)
  • [30] EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTIONS TO THE CAHN-HILLIARD EQUATION WITH VARIABLE EXPONENT SOURCES
    V. Chuong, Quach
    Nhan, Le C.
    Truong, Le X.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (46)